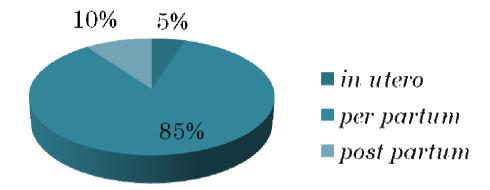


PEUT-ON PRÉVENIR L'HERPES NÉONATAL?

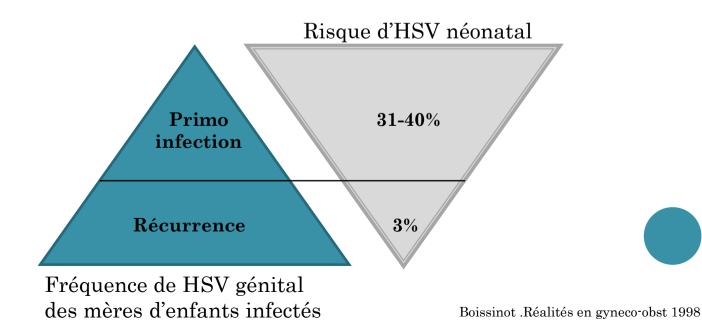
GEN Midi-Pyrénées 19 mars 2010 Bénard Mélinda

INTRODUCTION

- Incidence en France
 - 20 cas /an


- Virus
 - **HSV-2** (64-73%) > HSV-1

Pays	/100 000 nces vivantes/an
Suède	1,7
Hollande	2,4
Danemark	4,36
Angleterre	1,65
Australie	10
USA (Washington)	55,5
USA (Californie)	11,5
France	2,7


	HSV-2	HSV-1
localisée	45%	55%
Neurologique	85%	15%
Disséminée	58%	42%

TRANSMISSION ET FACTEURS DE RISQUE

Transmission

Facteurs de risque: rôle du statut maternel

PRESENTATIONS CLINIQUES

	CUTANEO- MUQUEUSE	DISSEMINEE	ENCEPHALITIQUE
Fréquence	45%	25%	30%
Apparition	10-12 jours de vie	7 jours de vie	16-19 jours de vie
Signes cliniques	Vésicules, kérato-conjonctivite	Difficulté téter, irritabilité, ictère, CIVD	Convulsions, fièvre, somnolence, difficultés à téter

DIAGNOSTIC DE L'HSV

	SENSIBILITE	SPECIFICITE	AVANTAGES	INCONVENIENTS
CULTURE VIRALE	40-90%	100%	Simplicité relative	 Certains labos Transport Délai Non adapté au LCR
PCR	98%	> 99%	 La plus sensible Même sous traitement Rapidité LCR 	Certains labosNon standardisé

TRAITEMENT CURATIF: ACICLOVIR

- Posologie actuelle
 - 60mg/kg/j IV
- Durée

Forme clinique	Localisée	Disséminée	Neurologique
Durée (j)	14	21	21

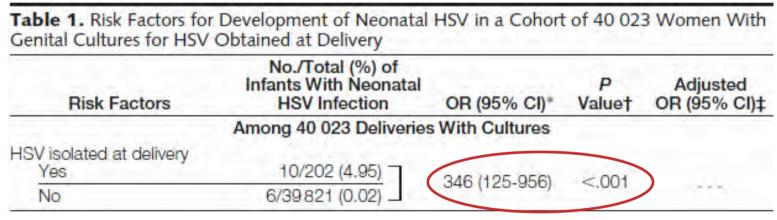
- Efficacité
 - Mortalité à 24 mois

Aciclovir (mg/kg/j)	30	45	60
Durée (j)	10	21	21
Forme neurologique (%)	19	20	6
Forme disséminée (%)	61	57	31*

• Morbidité à 12 mois

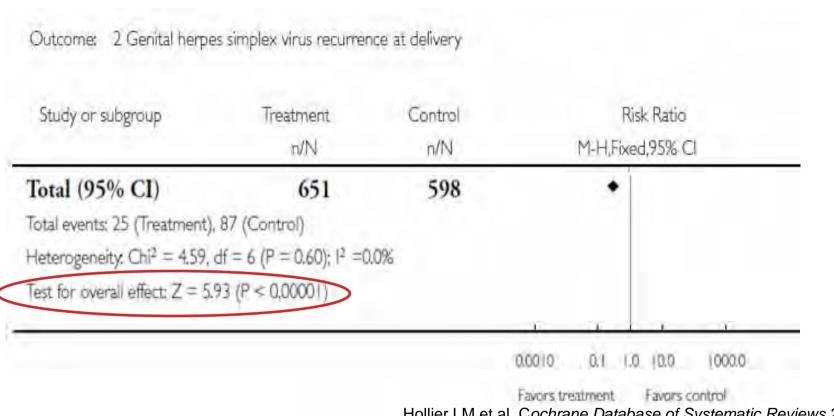
Aciclovir (mg/kg/j)	30 (10j)	60 (21 j)
Forme disséminée (%)	40	17
Forme neurologique (%)	71	69

FAUT-IL DÉPISTER LES MÈRES ET COMMENT ? PLACE DE LA SÉROLOGIE


Variable	Standard	Screening
Total infections*	18.28	13.58
Infections averted*	-	4.70
Total neurologic deficits/death*	7.82	5.81
Neurologic deficits/death averted*	-	2.01
Total cost (\$)	558,103,353	569,788,503
Marginal cost (\$)	=	11,685,150
Marginal cost/infections averted (\$)	-	2,484,980
Marginal cost/neurologic or deaths averted (\$)	-	\$5,812,819
Total QALY*	2,969,793.01	2,969,846.25
QALY gained*	-	53.24
Marginal cost/QALY gained (\$)	-	219,513

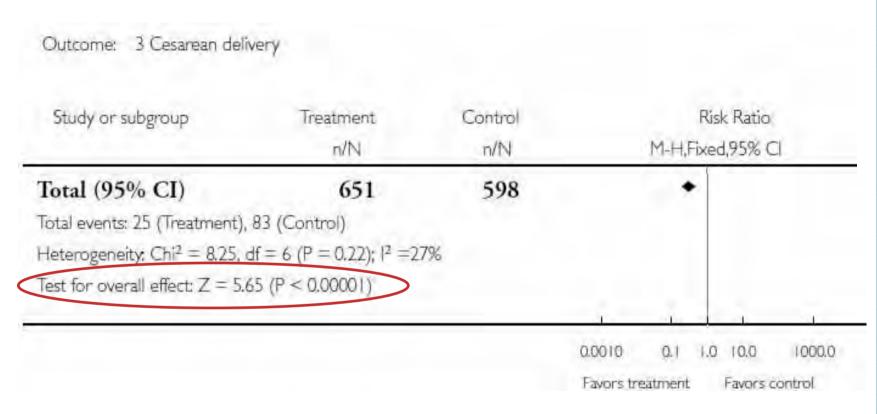
Thung. AJOG.2005

Dépistage sérologique inefficace et coûteux

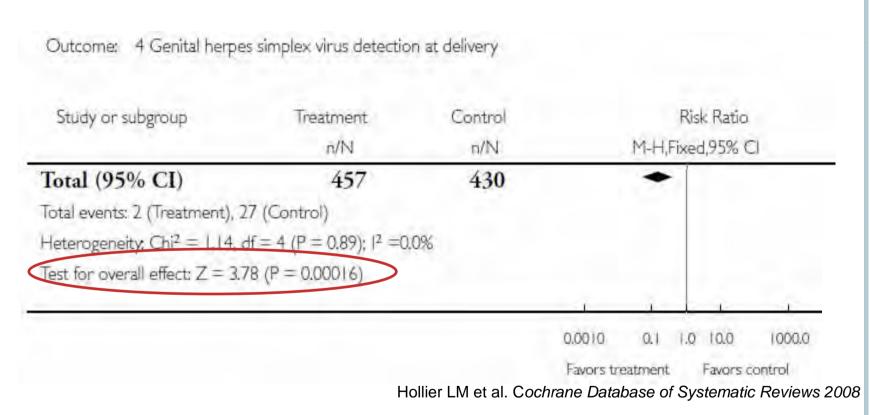

FAUT-IL DÉPISTER LES MÈRES ET COMMENT ? PLACE DE LA CULTURE VIRALE

Zane A. Brown et al. JAMA. 2003

LA MÈRE SÉROPOSITIVE DOIT-ELLE RECEVOIR UN TRAITEMENT SUPPRESSIF?


Hollier LM et al. Cochrane Database of Systematic Reviews 2008

Diminution significative du risque de récurrence à l'accouchement


LA MÈRE SÉROPOSITIVE DOIT-ELLE RECEVOIR UN TRAITEMENT SUPPRESSIF ?

Hollier LM et al. Cochrane Database of Systematic Reviews 2008

LA MÈRE SÉROPOSITIVE DOIT-ELLE RECEVOIR UN TRAITEMENT SUPPRESSIF ?

icativa du ricava d'excrétion

Diminution significative du risque d'excrétion virale à l'accouchement

FAUT-IL CÉSARISER ET QUI?

Table 1. Risk Factors for Development of Neonatal HSV in a Cohort of 40 023 Women With Genital Cultures for HSV Obtained at Delivery No./Total (%) of Infants With Neonatal Adjusted OR (95% CI)± **Risk Factors HSV Infection** OR (95% CI)* Valuet Among 202 Deliveries With HSV Isolated Type of delivery Cesarean 0.14 (0.02-1.08) .047 0.14 (0.02-1.26) Vaginal 9/117 (7

Zane A. Brown et al. JAMA. 2003

• Sérologie en contre grossesse ?

- Sérologie en contre grossesse
- Culture ou PCR HSV de prélévements génitaux à l'accouchement ?

- Sérologie en contre grossesse
- Culture ou PCR HSV de prélévements génitaux à l'accouchement
- Traitement suppressif par aciclovir ou valaciclovir ?

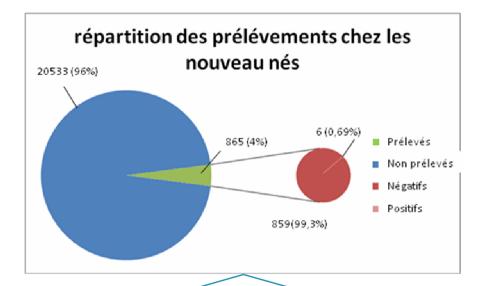
- o Sérologie en contre grossesse
- Culture ou PCR HSV de prélévements génitaux à l'accouchement
- Traitement suppressif par aciclovir ou valaciclovir
- Accouchement par césarienne ?

- o Sérologie en contre grossesse
- Culture ou PCR HSV de prélévements génitaux à l'accouchement
- Traitement suppressif par aciclovir ou valaciclovir
- Accouchement par césarienne

CHEZ LE NOUVEAU-NÉ

FAUT-IL DÉPISTER LES ENFANTS ?

Si la mère présente des <u>lésions évocatrices d'herpès</u> lors du travail :
 Des <u>prélèvements oculaires et pharyngé</u> sont réalisés chez le
 nouveau-né pour détection d'antigènes et/ou culture, à <u>48 ou 72</u>
 <u>heures</u> de vie. Les cultures réalisées à la naissance sont le plus souvent négatives et ne permettent pas pour autant d'éliminer le diagnostic.

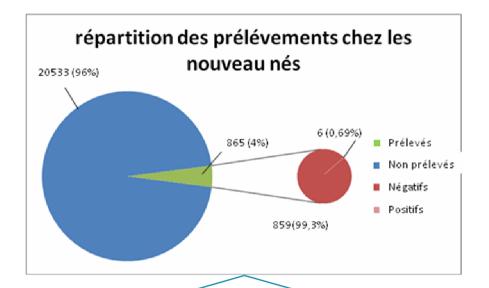

 Si la mère ne présente <u>aucune lésion</u> au moment du travail, mais a des <u>antécédents d'herpès</u>:

Il est souhaitable d'effectuer les mêmes prélèvements.»

Braig S et al. ANAES2001

FAUT-IL DÉPISTER LES ENFANTS ? L'EXPÉRIENCE À PAULE DE VIGUIER ENTRE 2000 ET

2005



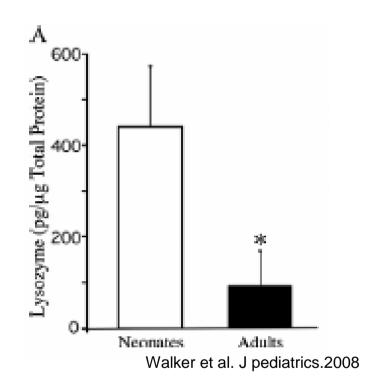
- 3 enfants asymptomatiques
- Anamnèse 2 antécédents, 1 non documentée
- Traitement IV 5-7 jours
- Evolution favorable

Traitement de sécurité

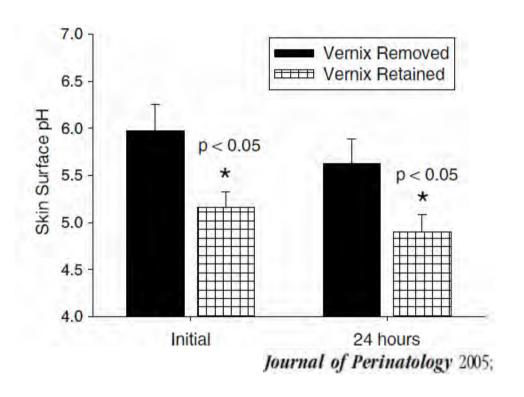
FAUT-IL DÉPISTER LES ENFANTS ? L'EXPÉRIENCE À PAULE DE VIGUIER ENTRE 2000 ET

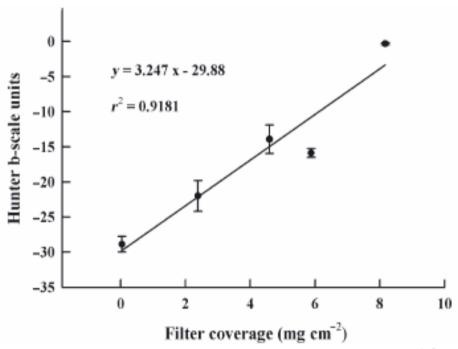
2005

- 3 enfants asymptomatiques
- Anamnèse 2 antécédents, 1 non documentée
- Traitement IV 5-7 jours
- Evolution favorable


Traitement de sécurité

- 3 enfants symptomatiques
- Anamnèse 1 antécédent, 2 primo-infections de diagnostic post-partum.
- Traitement IV 7-30 jours
- Evolution favorable


Traitement curatif


Function	Evidence	References
Waterproofing	Newborn animals exhibit hydrophobic surface, surface free energy of vernix indicates hydrophobic material	[11, 12, 36, 57]
Anti-oxidant	Contains alpha-tocopherol and melanin, human sebum high in vitamin E	[51–53, 66]
Moisturization	High water content of corneocytes, in vivo and in vitro evidence of hydrating ability	[2, 38, 53, 57]
Cleansing	Possesses both hydrophilic and hydrophobic domains, comparable efficacy to commercial cleansers	[36, 64]
Wound healing/ maturation	Increases skin metabolism in vitro, high glutamine content, effect on trophic ulcers	[24, 48, 58]
Anti-infective	Contains multiple diverse antimicrobial peptides in particulate form; reports of barrier properties to bacterial passage	[19–23, 59, 60]
Acid mantle	Facilitates acid mantle production in newborn infants	[53]
Protectant	Barrier film to passage of chymotrypsin and methylene blue (Figure 8), mechanical barrier to bacterial passage	[41, 59]

Nombreuses protéines anti-microbiennes

Hoath.Int Jour of Cosmetic Science, 2006

Est une barrière mécanique

FAUT-IL LAVER LES NOUVEAUX-NÉS? PLACE DE L'HYPOCHLORITE DE SODIUM 0.06%

• Efficacité?

EFFICACY OF DISINFECTANTS AGAINST HERPES SIMPLEX VIRUS TYPE I IN THE ABSENCE AND PRESENCE OF BLOOD

	Dilution	Exposure	Mean Log ₁₀ Viral Red	duction (Range)
Disinfectant		Time (min)	80 Blood*†	Saline*†
Hypochlorite	1:10 (5,000 ppm)	0.25	>4.42	>4.62
		0.50	>4.4	>4.6
		1.0	>4.4	>4.6
		2.0	>4.4	>4.6
		5.0	>4.4	>4.6
		10.0	>4.4	>4.6
Hypochlorite	1:100 (500 ppm)	0.25	0.272 (0.06-0.47)	>4.62
		0.50	0.29 (0.05-0.52)	>4.6
		1.0	0.29 (0.04-0.53)	>4.6
		2.0	0.32 (0.17-0.47)	>4.6
		5.0	0.35 (0.12-0.58)	>4.6
		10.0	0.37 (0.19-0.54)	>4.6

Weber et al. infection control and hospital epidemiology 1999

FAUT-IL LAVER LES NOUVEAUX-NÉS? PLACE DE L'HYPOCHLORITE DE SODIUM 0.06%

• Efficacité?

EFFICACY OF DISINFECTANTS AGAINST HERPES SIMPLEX VIRUS TYPE I IN THE ABSENCE AND PRESENCE OF BLOOD

		Exposure	Mean Log ₁₀ Viral Re	duction (Range)
Disinfectant	Dilution	Time (min)	80 Blood*†	Saline*†
Hypochlorite	1:10 (5,000 ppm)	0.25	>4.42	>4.62
		0.50	>4.4	>4.6
		1.0	>4.4	>4.6
		2.0	>4.4	>4.6
		5.0	>4.4	>4.6
		10.0	>4.4	>4.6
Hypochlorite	1:100 (500 ppm)	0.25	0.272 (0.06-0.47)	>4.62
		0.50	0.29 (0.05-0.52)	>4.6
		1.0	0.29 (0.04-0.53)	>4.6
		2.0	0.32 (0.17-0.47)	>4.6
		5.0	0.35 (0.12-0.58)	>4.6
		10.0	0.37 (0.19-0.54)	>4.6

Weber et al. infection control and hospital epidemiology 1999

Quid de l'efficacité de l'hypochlorite à 300 ppm, in vivo?

FAUT-IL LAVER LES NOUVEAUX-NÉS? PLACE DE L'HYPOCHLORITE DE SODIUM 0.06%

• Efficacité?

EFFICACY OF DISINFECTANTS AGAINST HERPES SIMPLEX VIRUS TYPE I IN THE ABSENCE AND PRESENCE OF BLOOD

		Exposure	Mean Log ₁₀ Viral Red	duction (Range)
Disinfectant	Dilution	Time (min)	80 Blood*†	Saline*†
Hypochlorite	1:10 (5,000 ppm)	0.25	>4.42	>4.62
		0.50	>4.4	>4.6
		1.0	>4.4	>4.6
		2.0	>4.4	>4.6
		5.0	>4.4	>4.6
		10.0	>4.4	>4.6
Hypochlorite	1:100 (500 ppm)	0.25	0.272 (0.06-0.47)	>4.62
		0.50	0.29 (0.05-0.52)	>4.6
		1.0	0.29 (0.04-0.53)	>4.6
		2.0	0.32 (0.17-0.47)	>4.6
		5.0	0.35 (0.12-0.58)	>4.6
		10.0	0.37 (0.19-0.54)	>4.6

Weber et al. infection control and hospital epidemiology 1999

• Tolérance?

«Sa tolérance cutanée est comparable à celle des savons doux...»

FAUT-IL LAVER LES NOUVEAUX-NÉS? ET LES AUTRES...

Classe	Exemple	Spectre d'activité	Toxicité/ désavantages	Usages cliniques
Alcools (depuis le moyen- âge)	Alcool éthylique 70%. Alcool isopropilique 60%	Gram +: +++ Gram -: +++ Mycobactéries: ++ Spores: - Virus: + Champignons: +	Aucune	Désinfection de la peau avant prise de sang ou injection. Désinfection de petit matériel médico-chirurgical.
Biguanide (depuis 1955)	Chlorhexidine	Gram +: +++ Gram -: ++ Mycobactéries: - Spores: - Virus: - Champignons: +	Légèrement irritante pour les muqueuses selon la concentration	Antiseptique largement utilisé dans les savons pour le lavage hygiénique et chirurgical. Solution aqueuses pour irrigation de plaies ou de muqueuses. Solutions alcooliques pour désinfection préopératoire de la peau ou des mains par friction.
lodophores (depuis env. 1920)		Gram +: +++ Gram -: +++ Mycobactéries: ++ Spores: ++ Virus: ++ Champignons: ++	Réaction d'hypersensibilité locale ou générale. Toxique chez les nouveau-nés. Tachant.	Désinfection des mains, de la peau, des plaies, des muqueuses.
Ammoniums quaternaires (depuis env. 1900)	Chlorure de benzalkonium	Gram +: +++ Gram -: + Mycobactéries: - Spores: - Virus: + Champignons: ++	Réactions d'hypersensibilité	Utilisés avec d'autres principes actifs
Agents oxydants (depuis env. 1945)	Eau oxygénée. Acide paracétique. Permanganate de potassium.	Gram +: +++ Gram -: +++ Mycobactéries: ++ Sporos: +++ Virus: + Championons: +	Corrosif pour les métaux. Explosif.	Eau oxygénée: désinfection des plaies. Acide paracétique: désinfection des filtres d'hémodialyse. Permanganate de potassium: désinfection de l'eau

FAUT-IL TRAITER LES YEUX DES NOUVEAUX-NÉS ?

PLACE DES COLLYRES

1.1. Principe actif

aciclovir

1.2. Indication

Kératite herpétique

ZOVIRAX et VIRA A possèdent en effet la particularité de pénétrer dans le corps de la cornée et le segment antérieur permettant d'agir sur les kératites profondes et les kérato-uvéites alors que les produits antérieurs n'agissent que sur les formes superficielles ; en conséquence, ils raccourcissent la durée d'évolution de la maladie et en réduisant la gravité et les séquelles.

HAS 2002

"La Povidone-iodée 0,1% est efficace in vitro sur HSV-2."

Benevento. 1990

"Bonne tolérance de l'administration de collyre de povidone iodée 1,25% chez les nouveau-nés à terme, en bonne santé" Richter. 2006

• Dépistage par PCR?

• Dépistage par PCR

• Vernix caseosa?

- Dépistage par PCR
- Vernix caseosa
- Bain antiseptique?

- Dépistage par PCR
- Vernix caseosa
- Bain ant tique

- o Dépistage par PCR
- Vernix caseosa
- Bain ant tique
- Collyre?

CHEZ LES NOUVEAUX-NÉS?

- Dépistage par PCR
- Vernix caseosa
- Bain ant tique
- Co Co

CHEZ LES NOUVEAUX-NÉS?


- Dépistage par PCR
- Vernix caseosa
- Bain ant tique
- Co Co

• NECESSITE D'INFORMER L'ENTOURAGE

CONCLUSION

- > Infection rare, fatale en dehors de tout traitement
- > Prévention basée sur 2 axes
 - > Maternel: interventions validées
 - Néonatal: interventions non validées mais principe de précaution
- > Pronostic amélioré par un diagnostic précoce
 - Nécessité d'informer les parents

Merci de votre attention...

DIAGNOSTIC DE L'HSV NEONATAL

PLACE DE LA PCR depuis 2002

DIAGNOSTIC DE L'HSV NEONATAL PLACE DE LA PCR SUR LE LCR

- « plus sensible que la culture ». ANAES 2001
- « Méthode diagnostic de choix ». Stranska 2004
- •« la référence pour détecter les infections herpétique du SNC» Weidmann 2003
- « outil important » Schmutzhard 2004
- •« sensibilité **75-100%**, spécificité **71-100%** »Kimberlin 2005

DIAGNOSTIC DE L'HSV NEONATAL PLACE DE LA PCR SUR LA PEAU, LES MUQUEUSES

•« La PCR améliore le taux de détection sur les différents types de prélèvement» Stranska 2004

Numbers of real-time PCR and shell vial culture results for HSV, by origin of specimen

PCR	Culture	Origin of speci	Origin of specimen					
		Skin	Ano-genital	Oro-facial	Eye	Throat		
+	+	4 (21.1)	24 (23.4)	8 (26.1)	0	5 (26.4)		
	_	3 (38.3)	8 (29.6)	3 (34.2)	1 (34.8)	Û >		
-	_	14	24	20	8	12		
Total		21	56	31	9	17		

DIAGNOSTIC DE L'HSV PLACE DE LA PCR SUR LES MUQUEUSES

• « La PCR est **plus sensible et plus rapide** que la culture virale.» Schmutzhard 2004

Sensitivity, specificity, PPV and NPV of virus isolation and real-time PCR using the nested PCR as golden standard

Method	Sensitivity	Specificity	PPV	NPV
Wellou	(%)	(%)	(%)	(%)
HSV-1				
Virus isolation	100	100	100	100
Real-time PCR	100	98	92	100
HSV-2				
Virus isolation	73	100	100	86
Real-time PCR	98	100	100	99

DIAGNOSTIC DE L'HSV PLACE DE LA PCR SUR LES MUQUEUSES

 « la PCR est plus sensible que la culture virale pour detecter HSV sur les muqueuses » Wald 2003

	No. (
		Posi	Positive			
Sex, lesion status, site	Total	By PCR	By viral culture	Positivity ratio ^a		
Women						
Present						
Cervix	290	122 (42)	11 (3.8)	11.1		
Vulvar	454	265 (58)	94 (21)	2.8		
Perianal	330	164 (50)	41 (12)	4.0		
Buttock ^b	50	36 (72)	13 (26)	2.8		
Absent				\ /		
Cervix	1477	155 (10)	11 (0.7)	14.1		
Vulvar	1697	223 (13)	21 (1.2)	10.6		
Perianal	1646	166 (10)	28 (1.7)	5.9		

DIAGNOSTIC DE L'HSV LA PCR OUI MAIS...

- « Les performances dépendantes du prélèvement et de son conditionnement »
 Kimberlin. 2005 faux négatifs
- « peut-être trop sensible pour détecter une réelle réactivation sur les muqueuses génitales. » Mendelson 2006 faux positifs
- « défaut de standardisation entre laboratoires. » O Riodan 2006

TRAITEMENT PRESOMPTIF

- Aucun consensus. ANAES 2001
- Indications
 - Méningo-encéphalite d'allure virale
 - Sd infectieux d'allure virale surtout si hépatite +/- pneumopathie
 - Sd infectieux et
 - o HSV génital+ à l'accouchement
 - o ATCD maternel ou paternel d'HSV génital ou cutanéo-muqueux
- Fiche de surveillance
- Aciclovir IV dans l'attente des résultats biologiques
- Aciclovir PO (24mg/kg/8h) en relai IV à évaluer

TRAITEMENT DE L'HSV NEONATAL

PLACE DE L'ACICLOVIR ORAL depuis 2002

TRAITEMENT CURATIF PLACE DE L'ACICLOVIR ORAL

No. of Skin	During the 6 mo of Suppressive Therapy 300 mg/m²/dose		In the 6 mo after Suppression 300 mg/m²/dose	
Recurrences				
	TID (n = 16)	$\begin{array}{c} \text{BID} \\ (n=2) \end{array}$	TID (n = 16)	$\begin{array}{c} \text{BID} \\ (n=2) \end{array}$
0	13 (81)	0 (0)	4 (25)	0 (0)
1	1(6)	1(50)	1(6)	1 (50)
2	1(6)	1 (50)	1(6)	0(0)
≥3	0(0)	0(0)	5 (31)	1 (50)
Unknown	1(6)	0(0)	5 (31)	0(0)

	Dosage (300 mg/m²/Dose)			
Abnormal Laboratory Value	$\begin{array}{c} \text{TID} \\ (n=21) \end{array}$	$\begin{array}{c} \text{BID} \\ (n=5) \end{array}$	Total (n = 26)	
Thrombocytopenia (<50 000/mm³)	0 (0)†	0 (0)	0 (0)	
Aspartate aminotransferase $>3 \times ULN$	0(0)	0(0)	0(0)	
Total bilirubin >3.0 mg/dl	4(19)	1(20)	5 (19)	
Blood urea nitrogen >15.0 mg/dl	2(10)	0(0)	2(8)	
Creatinine >1.0 mg/dl	1(5)	0(0)	1(4)	
White blood cell count <2000/mm3	0(0)	0(0)	0(0)	
Absolute neutrophil count		740		
<500/mm ³	3(14)	1(20)	4 (15)	
500-1000/mm ³	6 (29)	2(40)	8 (31)	

^{*} Any time during clinical trial.

"Evite les recurrences cutanées aprés atteinte cutanéo-muqueuse. Morbidité neurologique à évaluer." Kimberlin D. 1996.

 $[\]dagger$ Numbers in parentheses, percent of the total number of patients. ULN, upper limit of normal.

TRAITEMENT CURATIF PLACE DE L'ACICLOVIR ORAL

- « une atteinte encéphalitique sous traitement suppressif »
- « efficacité du traitement suppressif non démontrée » Fonseca-Aten 2005

« l'aciclovir oral pourrait être utilisé chez les enfants avec forme localisée ou avec récurrence après la période néonatale. L'évaluation de son efficacité et de sa tolérance est nécessaire » Jones CA. Cochrane database syst rev 2009

MODALITES DE DIAGNOSTIC DE L'HSV NEONATAL

Suspicion clinique d'HSV néonatal

Anamnèse maternelle, En salle de naissance

MODALITES DE DIAGNOSTIC DE L'HSV NEONATAL

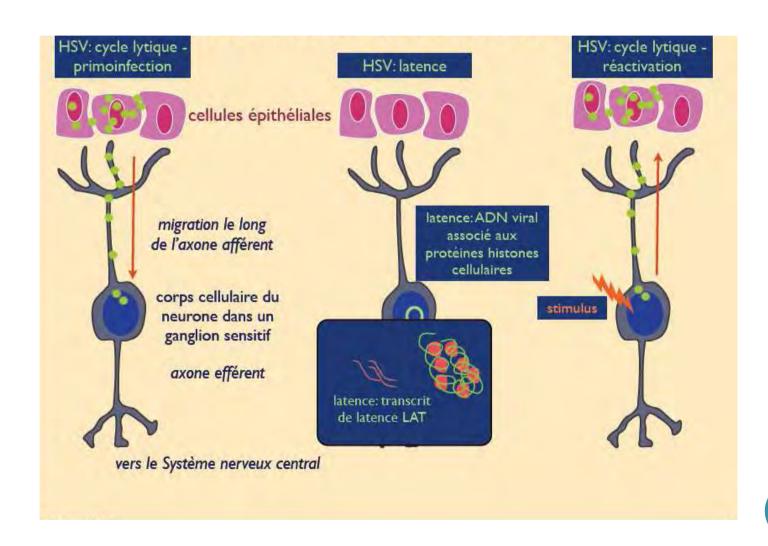
Suspicion clinique d'HSV néonatal

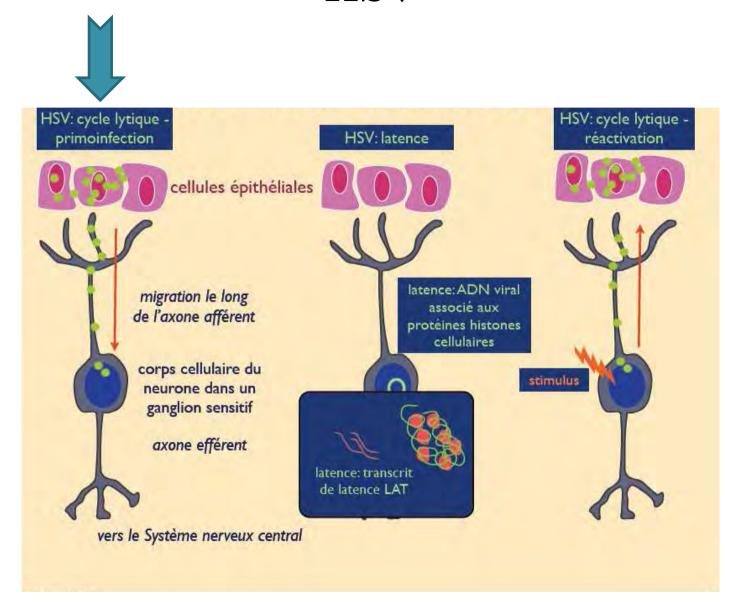
- Diagnostic direct
 - Culture virale : lésions cutanéomuqueuses, sang
 - PCR : sang et LCR
 - IF: lésions cutanéo-muqueuses
- Diagnostic indirect
 - IFN élevé dans le LCR
 - Elévation des transaminases
 - Atteinte bitemporale sur TDM ou IRM
 - Anomalies bitemporales à l'EEG

Anamnèse maternelle, En salle de naissance

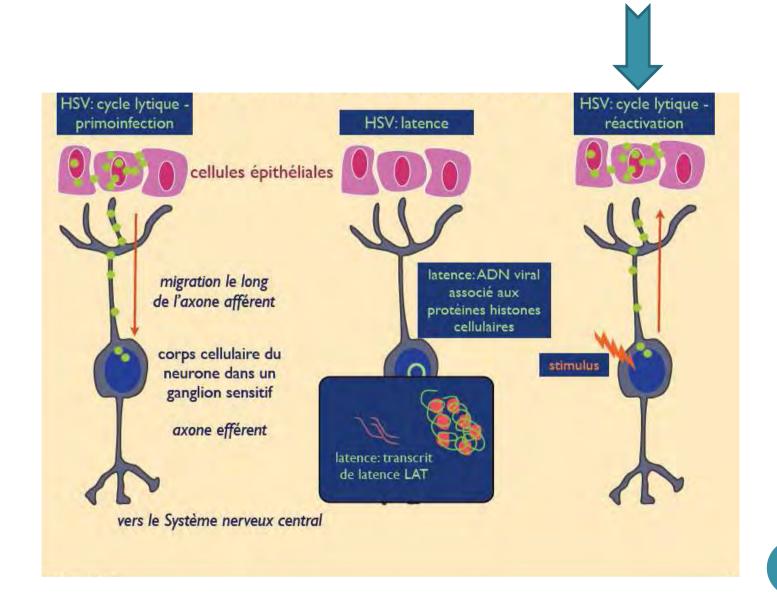
MODALITES DE DIAGNOSTIC DE L'HSV NEONATAL

Suspicion clinique d'HSV néonatal


- Diagnostic direct
 - Culture virale : lésions cutanéomuqueuses, sang
 - PCR : sang et LCR
 - IF: lésions cutanéo-muqueuses
- Diagnostic indirect
 - IFN élevé dans le LCR
 - Elévation des transaminases
 - Atteinte bitemporale sur TDM ou IRM
 - Anomalies bitemporales à l'FFG

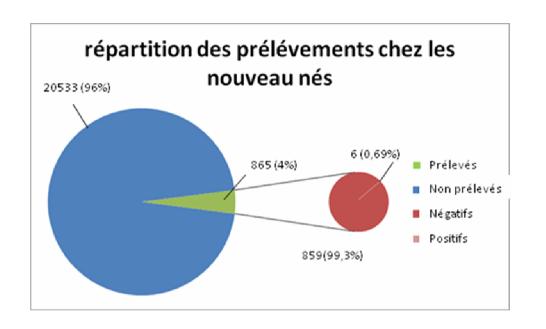

Anamnèse maternelle, En salle de naissance

Culture virale (pharynx, œil, selles) à la naissance puis hebdomadaire (1mois)


PCR à évaluer

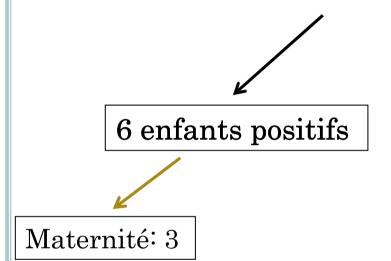
PRESENTATIONS CLINIQUES

Formes cliniques	Age à l'apparition des premiers signes (j)	Signes cliniques		
Localisée (30-40%)	6	Lésions cutanéo-muqueuse, oculaires, buccales		
Neurologique (30-40%)	9-12	 Clinique : Troubles de conscience, hyporéactivité, coma, convulsions localisées ou généralisées LCR : 50-100 éléments/mm3 (lympho), hyperproteinorrachie modérée, glycorrachie normale EEG : anomalies aigues bitemporales ou aspect periodique ou quasi périodique 		
Disséminée (20-60%)	5-6	Ictère, hépatite aigue (transa>10N), CIVD, pneumopathie, choc, HPM, troubles neurologiques		


AU CHU DE TOULOUSE

	Mères	Enfants
Dépistage	 Interrogatoire Prélèvements génitaux si lésions ou anamnèse 	• Prélèvements œil, gorge, vulve à J0 et J3
Prévention	AciclovirCésarienne	Bain anti-septiqueCollyre anti-viral

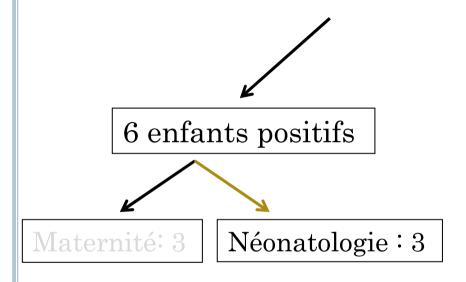
TRAITEMENT PREVENTIF


- Le probleme est que non symptomatique régulierement
- Sont Proposés:
- Dépistage systématique par sérologie (ref et resultatts)
- ; prlts acct;
- preservatifs......CF THESE
- Aciclovir en fin de grossesse si primo-infection. ANAES 2001. Cochrane 2008.

Primo-infection	Récurrence
30% symptomatique vésicules, ulcérations, irritation	5-12% symptomatiques vésicules, irritation
Clinique 21 jours	Clinique 2-10 jours
Excrétion 8 à 15 jours	Excrétion 3 jours
HSV-2 > HSV-1	HSV-2 > HSV-1

NOUVEAU-NES

3052 Prélèvements

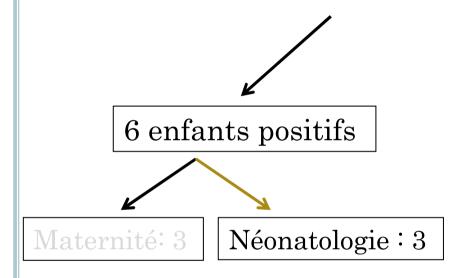


- Anamnèse 1 antécédent, 1 récurrence post partum, 1 non documentée
- Accouchement VB
- Hospitalisation J2- J11
- Asymptomatiques
- 2 enfants positifs à HSV-2, 1 positif à HSV-1
- Traitement IV 5-7 jours
- Evolution favorable

3 enfants porteurs

NOUVEAU-NES

3052 Prélèvements



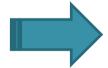
- Anamnèse 1 antécédent, 2 primo-infections de diagnostic post-partum.
- Accouchement césarienne 2 enfants, VB 1 enfant
- Hospitalisation J0-J4
- Symptomatiques
- 3 enfants positifs à HSV-1
- Traitement IV 7-30 jours
- Evolution favorable

3 enfants infectés

NOUVEAU-NES

3052 Prélèvements

INCIDENCE DE HSV NEONATAL : 2,8 / 100 000 NAISSANCES VIVANTES/AN



- Anamnèse 1 antécédent, 2 primo-infections de diagnostic post-partum.
- Accouchement césarienne 2 enfants, VB 1 enfant
- Hospitalisation J0-J4
- Symptomatiques
- 3 enfants positifs à HSV-1
- Traitement IV 7-30 jours
- Evolution favorable

3 enfants infectés

DIAGNOSTIC DE L'HSV LA PCR OUI MAIS...

- « Les performances dépendantes du prélèvement et de son conditionnement »
 Kimberlin. 2005 faux négatifs
- « peut-être trop sensible pour détecter une réelle réactivation sur les muqueuses génitales. » Mendelson 2006 faux positifs
- « défaut de standardisation entre laboratoires. » O Riodan 2006

« Les PCR sont les meilleures méthodes en terme de sensibilité et spécificité. » Ratman 2007

1. Principaux produits et présentation

Jusqu'à un titre de 5 degrés chlorométriques, les produits chlorés peuvent être utilisés comme antiseptiques de la peau saine, des muqueuses, et pour l'irrigation des plaies. A des titres

supérieurs, ils sont irritants pour la peau et sont utilisés comme désinfectants (ex : eau de Javel, voir chapitre désinfectants).

Le degré chlorométrique de Gay-Lussac correspond au nombre de litres de chlore gazeux qu'un litre de solution ou d'extrait est capable de dégager en présence d'un acide dans de conditions

normales de température et de pression. Un degré chlorométrique équivaut à 3,17 g de chlore actif par litre.

solution neutre diluée d'hypochlorite de sodium ou soluté de Dakin (Pharmacopée française Xème éd)*

C'est une préparation officinale ou hospitalière dont le délai de péremption est court : 2 à 3 semaines maximum.

Dakin Cooper stabilisé® (AMM): flacons de 250 ml, 500 ml ou 1 litre, monodose de 60 ml.

Il s'agit d'une spécialité pharmaceutique dont le pH, le système tampon et le conditionnement permettent d'allonger le délai de péremption à 30 mois. La durée de conservation du flacon une fois ouvert ne doit pas excéder 15 jours. Le titre en chlore actif est identique a celui du soluté de Dakin

*Le soluté de Dakin titre 5 g/l (0,5%) soit 5000 ppm (partie pour million) en chlore actif ou 1,5 degré chlorométrique.

Amukine® (AMM) : flacon de 125 ou 250 ml

C.CLIN Paris-Nord - Mai 2000

23

Le délai de péremption de cette spécialité pharmaceutique est de 36 mois (flacons non ouverts) et 15 jours maximum après ouverture.

Ce médicament titre 0,6 g/l (0,06%) soit 600 ppm en chlore actif ou 0,2 degré chlorométrique.

2. Spectre d'activité

Les dérivés chlorés ont un spectre d'activité étendu (voir chapitre désinfectants) : bactéries (formes végétatives et sporulées), champignons, virus, spores.

3. Mode d'action

Le délai d'action est rapide, dès la première minute de contact. Le pouvoir oxydant provoque la destruction de protéines au niveau membranaire et chromosomique.

4. Facteurs influençant l'activité et la stabilité

- pH :
- à pH < 5, il y a dégagement de chlore gazeux : la solution perd son activité.
- à pH = 5, l'activité est maximale.
- Température : si elle est augmente, la stabilité des solutions diminue mais l'action antimicrobienne est plus rapide à 37℃ qu'à 22℃.
- Les matières organiques, les savons, réduisent le pouvoir antimicrobien.
- Les minéraux : fer, cobalt, nickel, cuivre et manganèse diminuent la stabilité des solutions d'hypochlorites.
- Les rayons ultraviolets accélèrent la dégradation des produits chlorés.

5. Indications

Antisepsie de la peau saine et des mugueuses.

6. Précautions d'emploi

C.CLIN Paris-Nord - Mai 2000

- Nettoyer et rincer soigneusement la peau avant application en raison de la forte inhibition par les matières organiques et les savons. Cette étape de nettoyage préalable est d'autant plus importante pour les produits faiblement dosés en chlore actif.
- Risque de sensation de brûlure sur peau lésée (plaies importantes)
- Utiliser de l'eau déminéralisée, bactériologiquement propre pour la préparation de solutions stables (cf effet des minéraux).
- Conserver les solutions dans les récipients d'origine qui doivent être fermés et gardés à l'abri de la lumière et de la chaleur.
- En cas d'ingestion, l'antidote est le bicarbonate de sodium.
- Tenir compte des courts délais de péremption du Dakin officinal.

Activité virucide

La norme AFNOR NF T 72-180 teste des virus nus, particulièrement résistants aux produits

antiseptiques et désinfectants. De nombreux produits mettent en avant une activité sur le virus de

l'hépatite B (HBV) et sur le VIH, virus enveloppés facilement détruits par la majorité des produits.

Or aucun test d'efficacité sur ces deux virus ne fait l'objet d'un consensus en raison des difficultés

de culture de ces virus et de la diversité des modalités de révélation des particules virales. De la

même manière, il n'existe pas de test validé de l'évaluation de l'activité d'un produit désinfectant

sur le virus de l'hépatite C.

TRAITEMENT PREVENTIF PLACE DU BAIN ANTI-SEPTIQUE dans le cadre de l hsv

- •« pas de toxicité clinique après bain à la chlorhexidine» Wilson 2004
- •« L'hypochlorite de sodium n'a pas de contre indication en dehors de l'hypersensibilité aux hypochlorites alcalins. Sa tolérance cutanée est comparable à celle des savons doux... Inactivé par les matières organiques ce qui suppose une detersion et un lavage préalable» Lahmiti 2010
- « povidone iodée: inconvenient théorique d'une surcharge iodée et d'une hypothyroïdie par absorption percutanée » Lahmiti 2010

Study	Design	Objective/Outcome(S)	Chlorhexidine Dose and Delivery Method	Sample Size	Results
Hospital-based stud	lies				ar on the second
Tuke ²¹ (UK, 1975)	Single-center prospective study, comparison of consecutive periods with and without chx bathing	Impact of chx full-body cleansing on overall incidence of superficial staphylococcal infections (eye, skin, umbilical)	Daily bathing with 10% dilution of Hibiscrub compared to previous period with nonantiseptic cleansing	~2000 chx ~2000 Control	Overall superficial infections were reduced among infants receiving chlorhexidine bathing (0,3% vs. 2.6%) (RR = 0.10 [0.04-0.2]
Meberg ⁵⁰ * (Norway, 1985)	Randomized controlled trial	Impact of whole-body washing and umbilical cord cleansing with chx on superficial infections (eye, skin, umbilical)	4.0% chx Applied daily to the umbilical cord and entire body of infant until discharge (soap and water control group)	105 chx 111 Centrol	Superficial infections in the nursery were reduced (NS; RR = 0.35 [0.72-1.70]). Overall 6-week superficial infection rate was 13% lower in the chx group (P = 0.75)
Taha ^{4†} (Malawi, 1997)	Prospective study; comparison of periods with/without/with intervention	Impact of chx cleansing (maternal and neonatal) on mother- to-child transmission of HIV and maternal and neonatal infections	Birth canal and external genitalia wiped with cotton soaked in 0.25% chx; every 4 h. Infant given single wipe with cotton soaked in 0.25% chx (untreated comparison group)	3743 chx 3417 non-trt	No reduction in vertical transfer of HIV; 12% (3%-21%) reduction in neonatal admissions to the NICU, 50% (24%-68%) reduction in neonatal sepsis, 50% (12%-71%) reduction in infection related mortality; 22% (0%-40%) reduction in overall early neonatal mortality
Bakr ^{5†} (Egypt, 2005)	Prospective study: comparison of consecutive periods with and without intervention	Impact of chx cleansing (maternal and neonatal) on admissions to the NICU, overall neonatal morbidity, sepsis-related morbidity and mortality	Vaginal cleansing with cotton soaked in 0.25% chlorhexidine, followed by neonatal wipe with gauze soaked in 0.25% chlorhexidine (untreated comparison group)	2293 chx 2138 non-trt	Overall neonatal admissions rate was the same in both groups; infection-specific admission rate was reduced $(0.7\% \text{ vs } 1.9\%, P < 0.001)$; infection specific and all-cause mortality wa reduced 75% $(P < 0.01)$ and 33% $(P = 0.01)$, respectively
Community-based Tielsch ⁶ (Nepsl, 2005)	studies Cluster randomized, placebo-controlled, community-based trial	Impact of chx cleansing on neonatal mortality and morbidity	Single wipe with cloth impregnated with 0.25% chlorhexidine (placebo control group)	8519 chs 8787 Control	Overall neonatal mortality was 11% lower in the chx group (RR = 0.88 [0.72-1.10]). Among low-birth-weight infants, neonatal mortality was reduce 28% (5%-45%)

^{*}Infants in the intervention group also received umbilical cord cleansing with 4.0% chlorhexidine.

†Intervention in these studies included both vaginal cleansing and neonatal full-body skin cleansing with chlorhexidine.

Virus	Familia de virus	Actividad	Conc. (%)	Fuente
- Virus respiratorio sincitial	Paramyxovirus	+	0.25	Platt (1985)
Herpes hominis/simplex	Herpesvirus	+	0.02	Bailey (1972)
Poliovirus, tipo 2	Enterovirus	-	0.02	Bailey (1972)
Adenovirus, tipo 2	Adenovirus	-	0.02	Bailey (1972)
- Virus de la anemia infecciosa de equinos	Retrovirus	+	2.0	Shen (1977)
- Variola virus (viruela)	Poxvirus	+	2.0	Tanabe (1976)
- Herpes simplex, tipo 1/2	Herpesvirus	+	0.02	Shinkai (1974)
- Virus de la influencia equina	Orthomyxovirus	+	0.001	Eppley (1968)
- Virus del cólera porcino	Togavirus	+	0.001	Eppley (1968)
- Diarrea viral bovina	Togavirus	+	0.001	Eppley (1968)
- Virus de la parainiluenza	Paramyxovirus	+	0.001	Eppley (1968)
Virus de la gastroenteritis transmisible	Coronavirus	+	0.001	Eppley (1968)
- Virus de la rabia	Rhabdovirus	+	0.001	Eppley (1968)
- Virus del moquillo canino	Paramyxovirus	+	0.01	Eppley (1968)
- Virus de la bronquitis infecciosa	Coronavirus	+	0.01	Eppley (1968)
- Virus Newcastle	Paramixovirus	+	0.01	Eppley (1968)
- Virus de la pseudorabia	Herpesvirus	+	0.01	Matishek (1978)
- Cytomegalovirus	Herpesvirus	+	0.1	Faix (1986)
Cocksackievirus	Picornavirus	-	0.4	Narang (1983)
Echovirus	Picornavirus		0.4	Narang (1983)
Rotavirus humano	Reovirus		1.5	Springthorpe (1986
- Virus de inmunodeficiencia humana, tipo 1	Retrovirus	+	0.2	Harbison (1989)

Clorhexidina: un antiséptico de nuestros tiempos. Consideraciones útiles para nuestra práctica clínica 104 MARZO 2008