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An omnibus test for several hazard
alternatives in prevention randomized
controlled clinical trials
Valérie Garès,a,b,c Sandrine Andrieu,a,c Jean-François Dupuyd

and Nicolas Savya,b*†

The logrank test is optimal for testing the equality of survival distributions against a proportional hazards alter-
native. Under a late effects alternative, it is no longer appropriate, and one may turn to Fleming–Harrington’s
class of weighted logrank tests instead. In some settings, such as in preventive clinical trials where the statistical
analysis has to be designed before the trial begins, it can be difficult to choose a priori between the logrank and
Fleming–Harrington tests. A solution to this issue is provided. A decision rule is constructed for the problem of
testing the equality of two survival distributions when the expected alternative may be one of the proportional
hazards and late effects. A formula for computing the necessary sample size is obtained for this decision rule. A
comprehensive simulation study is conducted to assess finite sample properties of the proposed test statistic. The
proposed test improves both the logrank test and Fleming–Harrington’s test for late effects. Finally, the method-
ology is illustrated on a data set in the field of prevention of Alzheimer’s disease. Copyright © 2014 John Wiley
& Sons, Ltd.
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1. Introduction

Neurodegenerative dementias are a growing public health concern. For example, a recent study estimated
the prevalence of Alzheimer’s disease at 115.4 million people in 2050 [1]. There is currently no effective
treatment for this pathology, which makes its prevention a priority. Prevention is feasible because of
the long asymptomatic latent period of the disease. Some studies have shown that delaying Alzheimer’s
disease onset for a few years could substantially reduce the burden of dementia on society and public
healthcare systems [2, 3].

A small number of clinical trials have been conducted to assess prevention treatments for Alzheimer’s
disease. Their evaluation criterion was a delayed appearance of the event ‘develop dementia’. All these
trials were analyzed using the logrank test [4] and concluded that the various treatments do not exhibit
a significant effect (e.g., [5–8]). The logrank test allows testing of the equality of survival distributions
from censored event time data. This test is optimal under the proportional hazards model [9] and thus
is likely to be unsuitable for prevention clinical trials. Indeed, preventive treatments may require some
exposure before an effect becomes visible. In this setting, we say that late effects occur. Late effects refer
to the situation where the hazard (or survival) functions are mostly the same at the beginning of the trial
and differ at a later stage. The proportional hazards assumption is unrealistic when late effects occur, and
thus, the logrank test is not optimal. To overcome this problem, one idea is to plug a weight function
(Wn(s), s ∈ R+) (depending on the sample size n) in the logrank statistic. This yields the so-called
weighted logrank tests. Specific weights are motivated by the kind of deviation from the null hypothesis
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(of equality of the survival functions) that one is interested in detecting. A large amount of literature has
been devoted to these tests so far and numerous weights have been proposed:

• For detecting early differences between groups, the most widely used tests consider for Wn(s): the
number of subjects at risk at s (or its square root, [10, 11]) or Kaplan–Meier estimator Ŝn of the
survival function under the null hypothesis [12, 13] or a power of this estimate (yielding the Gp

family, see [14]). In [15], the authors adapted the Gp weight to rare events.
• For detecting lag alternatives, constant piecewise and linear piecewise weights were proposed in

[16]. For detecting early and/or late effects, Fleming and Harrington [17] proposed the Gp,q family
based on the weight

Wp,q
n (s) =

[
Ŝn(s)

]p [
1 − Ŝn(s)

]q
. (1)

Wu and Gilbert [18] considered a quadratic weight based on Ŝn and an additional real parameter, and
Wallenstein and Berger [19] considered a quadratic weight.

The choice of a given weight depends heavily on the postulated alternative hypothesis and misspeci-
fying this alternative may imply a loss of power. Several tests have therefore been proposed to handle
simultaneously a range of alternatives:

• linear combinations of weighted statistics were investigated in [20–22] and
• the maximum of several weighted logrank statistics was studied by [18, 22–24].

Several other strategies are available. In [25–27], authors proposed to estimate the weight from the data,
and in [28, 29], authors considered the supremum over time of a weighted logrank statistic. To date, the
most advanced work on this topic was provided by Kosorok and Lin [30], who considered a general
class of function-indexed weighted logrank statistics. This class includes as special cases the supremum
and infimum of Gp,q statistics over p and/or q (respectively over time and p and/or q) and sums of these
supremum and infimum.

Most of the aforementioned tests depend on some parameters that have to be fixed by the investigator,
such as p and q. This is a problem in preventive randomized clinical trials where all parameters have to
be fixed before the trials begin (and thus before any data-based information has become available to help
choosing parameters). The tests mentioned earlier have not been discussed in this setting. Moreover, no
formula is available for calculating the necessary sample size for most of them although this is a crucial
aspect of the design of clinical trials. A sample size formula has been proposed for the supremum over
time of a weighted logrank statistic [29,31], but the fact that the precise set of alternatives for which this
test has good power is currently unknown can make clinicians hesitate to use it. In [30], only intervals of
values for p and q (and not the actual values) have to be selected. The problem is moved to specifying
bounds for these intervals, which may be considered as a simpler issue. However, authors provide no
indication on how to choose these bounds. Moreover, in practice, authors use a discrete approximation
of the intervals for p and q, which raises the problem of choosing the resolution of these approximations.
Finally, no sample size formula is provided for this class of tests.

In the present paper, we consider the setting of a preventive randomized clinical trial where an inves-
tigator wishes to test a treatment effect but has no firm prior knowledge of whether this effect should be
of the proportional hazards form or a late effect. In this situation, it is difficult to choose a priori between
a logrank test and a weighted logrank for late effects. We aim at providing a solution to this dilemma.
Precisely, we construct a new statistic for testing the equality of two survival distributions when one sus-
pects that the alternative is one of the proportional hazards or late effects. Our test statistic is constructed
as the maximum of the logrank statistic and several Fleming–Harrington’s statistics for late effect. This
proposal is designed to have good power against both late effects and proportional hazards alternatives.
As mentioned earlier, Kosorok and Lin [30] investigated a general class of weighted logrank statistics,
which includes supremum (respectively infimum and sums of supremum and infimum) over time and/or
p and q of Gp,q statistics. However, almost none of these tests are powerful against both proportional haz-
ards and late effects alternatives. From [30], the weighted logrank statistic G0,1 and its supremum over
time perform well against both alternatives but only if the delayed effect does not occur too late. Hence,
these tests are not really appropriate in a genuine late effect setting.
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The test proposed in our paper also depends on some parameters that have to be fixed by the inves-
tigator, but we provide some indications on how to choose them. We derive the asymptotic distribution
of the suggested test statistic under the null hypothesis of equality of the survival distributions between
groups. Under the alternative hypothesis, we derive a weak convergence result, which yields a formula
for computing the necessary sample size for the proposed test. We conduct a comprehensive simulation
study to assess finite sample properties of the proposed statistic, and we compare its performance with
the logrank test, to Fleming–Harrington’s test for late effects and to the supremum logrank test. Finally,
we illustrate the proposed methodology on the GuidAge study.

GuidAge is a 5-year-long prospective prevention trial involving patients who spontaneously reported
memory complaints [32]. The primary objective was to investigate the effect of a treatment called EGb761
on the conversion rate from memory complaints to Alzheimer’s disease. The statistical analysis design
was specified before the beginning of the trial and required data to be analyzed using the logrank test,
which concluded that the treatment is ineffective. A re-analysis using Fleming–Harrington’s test for late
effect with p = 0 and q = 3 was conducted and concluded that the treatment is effective. This example
illustrates how difficult it can be to choose the best test to use in a setting where late effects are suspected
although they cannot be ascertained a priori.

The paper is organized as follows. In Section 2, we recall some useful background on weighted logrank
tests (definition, asymptotics and asymptotic relative efficiency). In Section 3, we construct our test
statistic, we investigate its asymptotic distribution, and we assess its performance via simulations. We
also propose a sample size equation for this test and a numerical method for approximating the solu-
tion of this equation. In Section 4, we compare our test with the supremum over time logrank test.
We analyze the GuidAge study in Section 5. A summary and some perspectives conclude the paper in
Section 6.

2. Some background on logrank and weighted logrank tests

In this section, we set some notations, we describe the problem, and we briefly recall some results about
weighted logrank tests and their asymptotic relative efficiency. These results will be useful in Section 3
(we refer the reader to [33] for a more detailed treatment of this material).

2.1. Weighted logrank tests: definition and asymptotic distribution

Let T be a non-negative random variable with cumulative distribution function F, survival function S =
1−F, hazard function 𝜆 and cumulative hazard function Λ(⋅) = ∫ ⋅

0 𝜆(s)ds. T denotes the duration between
a time origin and the time of occurrence of some event of interest. T is assumed to be right censored: we
observe the event only if it occurs before a certain time C. C has distribution function G and is assumed
independent of T . Assume that we observe n independent subjects. The 𝓁-th subject has latent survival
and censoring times T𝓁 and C𝓁 , respectively. The observations consist of the n couples (X𝓁 , 𝛿𝓁)𝓁=1…n,
where X𝓁 = min(T𝓁 ,C𝓁), 𝛿𝓁 = I{T𝓁 ⩽ C𝓁}, and I is the indicator function. For any t ⩾ 0, we also define
the random variables

Nn(t) =
n∑

𝓁=1

I
{

X𝓁 ⩽ t, 𝛿𝓁 = 1
}

and Yn(t) =
n∑

𝓁=1

I
{

X𝓁 ⩾ t
}
.

Nn(t) is the number of events at t, and Yn(t) is the number of subjects at risk at t−. Finally, let 𝜏 denote the
length of the study from the origin, and 𝜏

′ = inft⩾0{(1 − F(t)) (1 − G(t)) = 0}. We assume that 𝜏 < 𝜏
′
.

We consider a clinical trial with two arms, where nT patients receive a drug (or treatment), and nP
patients receive a placebo. In what follows, all the random variables (and related quantities such as the
distribution and survival functions) for the treatment (respectively placebo) group are upper-indexed by
T (respectively P). With these notations, n = nP + nT , Nn = NP

nP
+ NT

nT
and Yn = YP

nP
+ YT

nT
.

Let {F𝜃 ∶ 𝜃 ∈ Θ ⊂ R} be a family of continuous cumulative distribution functions on [0,∞) indexed
by the parameter 𝜃 ∈ Θ. The logrank statistic is a classical tool for testing the hypothesis of equality of
the survival distributions in the two groups against the alternative of distinct distributions:

0 ∶ FT = FP = F𝜃0 against 1 ∶
{

FT = F𝜃T and FP = F𝜃P

}
. (2)
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At time t, the logrank statistic can be written as

LRn(t) = ∫
t

0

(
nP + nT

nPnT

)1∕2 YP
nP
(s)YT

nT
(s)

Yn(s)

[
dNP

nP
(s)

YP
nP
(s)

−
dNT

nT
(s)

YT
nT
(s)

]
. (3)

The logrank test is optimal for testing 0 against a proportional hazards alternative [17]. When early or
late differences between groups exist, one turns usually to weighted logrank tests, which are obtained by
plugging a weight function in (3). If (Wn) is a sequence of adapted, bounded and non-negative predictable
processes, a weighted logrank test is defined as

LRWn
(t) = ∫

t

0
Wn(s)

(
nP + nT

nPnT

)1∕2 YP
nP
(s)YT

nT
(s)

Yn(s)

[
dNP

nP
(s)

YP
nP
(s)

−
dNT

nT
(s)

YT
nT
(s)

]
.

The logrank statistic LRn is a particular case of LRWn
, with Wn(t) = 1 for every t. Now, assume that

nP

n
−−−→
n→∞

1
2
, nT

n
−−−→
n→∞

1
2

and that there exists a function w ∈ D satisfying Wn(s)
a.s.

−−−→
n→∞

w(s) (with D the

Skohorod space of càdlàg functions). If t ∈ R, let

𝜋P(t) = lim
n→∞

YP
nP
(t)

nP
, 𝜋T (t) = lim

n→∞

YT
nT
(t)

nT
, 𝜋(t) = lim

n→∞

Yn(t)
n

= 1
2
(𝜋P(t)+𝜋T (t)) and k(t) = w(t)𝜋

P(t)𝜋T (s)
𝜋(t)

.

Then under 0, as n → ∞, the process LRWn
converges weakly to a mean-zero Gaussian process with

covariance function

𝜎2 ∶
(
t1, t2

)
→ ∫

t1∧t2

0
w2(s)𝜋

P(s)𝜋T (s)
𝜋(s)

dΛ𝜃0(s).

Under 1, as n → ∞, LRWn
−

√
n𝜇G

(𝜃T ,𝜃P) converges weakly to a mean-zero Gaussian process with

covariance function (𝜎G

(𝜃T ,𝜃P))
2 = (𝜎P

𝜃P)2 + (𝜎T
𝜃T )2, where

𝜇G

(𝜃T ,𝜃P) ∶ t→ ∫
t

0

1
2

k(s)
(
dΛ𝜃P(s) − dΛ𝜃T (s)

)
and

(
𝜎k
𝜃k

)2 ∶
(
t1, t2

)
→ ∫

t1∧t2

0

1
2

k2(s)
𝜋k(s)

dΛ𝜃k (s), k = T ,P.

Finally, a consistent estimator of the asymptotic variance of the weighted logrank statistic LRWn
(𝜏) [17]

is given by

𝜎̂2
Wn

= n
nPnT ∫

𝜏

0
W2

n (s)
YP

nP
(s)YT

nT
(s)

Yn(s)
dNn(s)
Yn(s)

.

Remark 1
In what follows, Fleming–Harrington’s test statistic for late effects (whose weight Wn is given by W0,q

n )
will be denoted by FHq

n. Its asymptotic variance estimator 𝜎̂2
W0,q

n

will be denoted by 𝜎̂2
q .

2.2. Asymptotic relative efficiency and application to weighted logrank tests

The results earlier imply that the asymptotic distribution of LRWn
(t) under1 is degenerate. The weighted

logrank tests are thus consistent and cannot be compared in terms of their power (see [17, 34] for a
more detailed exposition). In this setting, an appropriate comparison procedure is to consider sequences
of alternatives that converge to the null hypothesis as n tends to infinity. This is the idea of Pitman’s
asymptotic relative efficiency. An appropriate choice for the alternatives (𝜃P

nP
) and (𝜃T

nT
) in (2) is

𝜃P
nP

= 𝜃0 + 𝛾

√
nT

nP(nP + nT )
, 𝜃T

nT
= 𝜃0 − 𝛾

√
nP

nT (nP + nT )
,
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where 𝛾 is a constant [17]. Moreover in logrank testing, it is useful to consider the so-called ‘shift assump-
tions up to a change of time’ for the alternative hypothesis [34]. Shift assumptions are defined through
the following family of distribution functions:

F𝜃(t) = Ψ (g(t) + 𝜃) , 𝜃 ∈ Θ,

where g ∶ [0,∞[→] −∞, u+] (with u+ ∈ R̄) is a non-decreasing differentiable function, and Ψ is a con-
tinuous cumulative distribution function with a positive density Ψ′ and an almost everywhere continuous
second derivative Ψ′′. In this setting, it is possible to prove that the logrank is the most powerful test
against a proportional hazards alternative and to derive the alternative hypothesis for which the weight
(1) is optimal within the meaning of Pitman’s asymptotic relative efficiency (see [14] for p > 0 and q = 0
and [33] for p ⩾ 0 and q ⩾ 0). Precisely, if p ⩾ 0 and q ⩾ 0, Fleming–Harrington’s statistic with weight
Wp,q

n has maximum efficiency to test the hypothesis

0 ∶ FT = FP = F𝜃0 against 1 ∶
{

FT = Ψp,q
(

g + 𝜃T
nT

)
and FP = Ψp,q

(
g + 𝜃P

nP

)}
(4)

with

Ψp,q(u) = 1 − (p,q)−1 (u + 𝛿) , (5)

where u = g(t) + 𝜃0, 𝛿 is a constant, p,q is the one-to-one primitive of the function defined from [0, 1]
to R− by

x →
1

xLp,q(x)
with Lp,q(x) = −Binc (x − 1, q + 1, p)

and Binc the incomplete beta function Binc(x, a, b) = ∫ x
0 sa−1(1 − s)b−1ds [33]. The alternative hypothesis

1 is thus fully described by the function Ψp,q. This result is very important in practice: it enables us to
simulate situations where Fleming–Harrington’s test for late effects is optimal and to implement compar-
ative studies with alternative tests. Such studies have been conducted in [33], and their results essentially
state that Fleming–Harrington’s test with p = 0 and q > 0 has maximum efficiency to test late effects
but is not efficient when the true alternative is proportional hazards. Another interesting result is that the
outcome of Fleming–Harrington’s test for late effects is rather insensitive to the value of q [33]. This is a
nice feature for those clinical trials where: (i) one suspects late effects to occur and (ii) the clinical design
requires q to be chosen before the trial begins.

But at the design stage of a trial, one is rarely able to decide firmly between a proportional hazards
and a late effects alternative. Thus, it is usually difficult to choose a priori the best test to use between
the logrank and Fleming–Harrington’s tests. In the next section, we provide a solution to this dilemma.

3. The proposed test statistic

In this section, we construct a statistic for testing the hypothesis of equality of two survival distributions.
This statistic is designed to have good power against both late effects and proportional hazards alterna-
tives. It is constructed as the maximum of the logrank and Fleming–Harrington statistics. In what follows,
we investigate the asymptotic distribution of the proposed statistic, and we assess its performance via
simulations. We also propose a sample size formula for this test.

3.1. Maximum weighted logrank statistic: definition and asymptotic distribution

We consider the testing problem

{0 ∶ FT = FP = F,
1 ∶ ∪m

i=1

{
FT = Ψqi

(
g + 𝜃T (i)

)
and FP = Ψqi

(
g + 𝜃P(i)

)}
,

(6)

Copyright © 2014 John Wiley & Sons, Ltd. Statist. Med. 2015, 34 541–557
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where Ψq ∶= Ψ0,q is defined by (5), and for a given late effect alternative of the type qi, the shift Δ(qi)
is given by Δ(qi) ∶= 𝜃T (i) − 𝜃P(i). For every i = 1,… ,m, let pi be a known probability that reflects the
investigator’s degree of certainty that a late effect of type qi occurs, with

∑m
i=1 pi = 1 (note that if qi = 0,

the i-th alternative is proportional hazards). Let q⃗ = (q1,… , qm) ∈ Nm be such that qi ≠ qj for i ≠ j, and
let t ⩾ 0. We define the maximum weighted logrank statistic as

MLRq⃗
n(t) = max

i=1,…,m

(|||||FHqi
n (t)

𝜎̂qi
(t)

|||||
)
,

where FHqi
n and 𝜎̂qi

(t) are defined in Remark 1. To construct a decision rule, we need the asymptotic
distribution of the process MLRq⃗

n ∶= {MLRq⃗
n(t), t ⩾ 0} under 0. Under 0, as n → ∞, this process

converges weakly to maxi=1,…,m(|G̃qi |) where (G̃q1 ,… , G̃qm) is a m-variate mean-zero Gaussian process
with covariance function defined for any i, j = 1,… ,m by

(
Σ̃0

i,j

)2
∶ (t1, t2) → E

[
G̃

qi(t1)G̃qj(t2)
]
=

(
Σ0

i,j

)2
(t1 ∧ t2)

Σ0

i,i (t1)Σ
0

j,j (t2)
,

with
(
Σ0

i,j

)2
∶ t→ ∫

t

0
wqi(s)wqj(s)𝜋

P(s)𝜋T (s)
𝜋(s)

dΛ𝜃0(s)

and wq(s) = (1 − S(s))q. A decision rule with asymptotic level 𝛼 ∈ (0, 1) rejects the null hypothesis 0
if the statistic MLRq⃗

n(𝜏) exceeds the upper 𝛼-quantile of the distribution of maxi=1,…,m(|G̃qi(𝜏)|).
Under 1, the asymptotic distribution of MLRq⃗

n cannot be easily derived. However, we can establish
the following weak convergence result, which is sufficient to derive a sample size computation algorithm
(Section 3.3). For k = T ,P, let

Λ𝜃k ∶ t → − ln

(
m∑

i=1

pi

(
1 − Ψqi

(
g(t) + 𝜃k(i)

)))
and for i = 1,… ,m, let

𝜇qi ∶ t →
1
2∫

t

0
kqi(s)

(
dΛ𝜃P(s) − dΛ𝜃T (s)

)
with kqi(s) = (1 − S(s))qi

𝜋P(s)𝜋T (s)
𝜋(s)

and (
Σ1

i,j

)2
∶ t →

1
2∫

t

0
wqi(s)wqj(s)

[
𝜋P(s)

(
𝜋T (s)
𝜋(s)

)2

dΛ𝜃P(s) + 𝜋T (s)
(
𝜋P(s)
𝜋(s)

)2

dΛ𝜃T (s)

]
.

Then under 1, as n → ∞, the m-variate process (FHq1
n ∕𝜎̂q1

,… ,FHqm
n ∕𝜎̂qm

)−
√

n(𝜇q1∕Σ1

1,1,… , 𝜇qm∕Σ1
m,m)

converges weakly to (G̃′q1 ,… , G̃′qm), where (G̃′q1 ,… , G̃′qm) is a mean-zero m-variate Gaussian process
with covariance function

(
Σ̃1

i,j

)2
∶
(
t1, t2

)
→ E

[
G̃

′qi(t1)G̃′qj(t2)
]
=

(
Σ1

i,j

)2
(t1 ∧ t2)

Σ1

i,i (t1)Σ
1

j,j (t2)
, i, j = 1,… ,m. (7)

When m = 1, the problem boils down to proving the convergence of Fleming–Harrington’s statistic
(see [17], see also [33] for a recent new proof). When m > 1, similar arguments allow to prove that

under 0, (FHq1
n ∕𝜎̂q1

,… ,FHqm
n ∕𝜎̂qm

)
(Dm)
−→ (G̃q1 ,… , G̃qm) where (G̃q1 ,… , G̃qm) is as aforementioned.

The function (F1,… ,Fm) → maxi=1,…m(|Fi|) is continuous from Dm to D, and the convergence of MLRq⃗
n

follows.
Under 1, similar arguments allow to prove that (FHq1

n ∕𝜎̂q1
,… ,FHqm

n ∕𝜎̂qm
) −

√
n(𝜇q1∕Σ1

1,1,… , 𝜇qm∕

Σ1
m,m)

(Dm)
−→ (G̃′q1 ,… , G̃′qm) where (G̃′q1 ,… , G̃′qm) is defined earlier. Moreover under 1, it follows from

the Bayes formula that the distribution of T in the group k (k = T ,P) is given by
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P1
{T < t} =

m∑
i=1

P1

{
T < t | Ωi

}
P
{
Ωi

}
=

m∑
i=1

piΨqi
(
g(t) + 𝜃k(i)

)
,

where Ωi is the event ‘a late effects of type qi occurs’. It follows that Λ𝜃k (t) is expressed as − ln(∑m
i=1 pi(1 − Ψqi(g(t) + 𝜃k(i)))

)
, k = T ,P.

It is important to note that MLRq⃗
n is not necessarily the optimal statistic for testing the hypothesis (6).

Remark 2
In [33], the authors show that the result of Fleming–Harrington’s test is quite insensitive to the value of
q provided q > 0. Thus, one can restrict to q⃗ = (0, q) (where q can be chosen according to the guidelines
given in [33]), and in what follows, we will consider the test MLRq⃗

n(𝜏) with q⃗ = (0, q) (for notational
simplicity, we will denote this test by MLRq).

Remark 3
When q⃗ = (0, q), the probability p1 reflects the investigator’s degree of certainty that if a difference
between groups exist, this difference is of the proportional hazards form. p1 has to be calibrated based
on clinicians a priori judgment. Alternatively, one may set p1 = 0.5, which does not favor any of the
proportional hazards or late effects alternatives.

3.2. A simulation study

In this section, we assess properties of the test statistic MLRq via simulations. First, we assess its level
and power against proportional hazards and late effects alternatives. Then, we investigate the sensitivity
of MLRq to q. The power of MLRq against a crossing hazards alternative is assessed in Section 4.2.

Remark 4
In a simulation study described in [30], Kosorok and Lin investigated the behavior of several function-
indexed weighted logrank statistics against alternatives for which the optimal weight function is piecewise
constant. Here, we work under alternatives for which the logrank and Fleming–Harrington tests are
respectively optimal. Thus, the proposed MLRq is investigated under conditions that are the most
favorable for its direct competitors.

Simulation design. For illustrative purpose, we simulate the data in the placebo group from an expo-
nential distribution with parameter a, where a is chosen to yield a censoring proportion c ∶= SP(𝜏) at 𝜏.
We have

a = −
ln

(
SP(𝜏)

)
𝜏

. (8)

We define the magnitude of discrepancy between survival distributions in the treatment and placebo
groups through the rate

r = ST (𝜏) − SP(𝜏)
1 − SP(𝜏)

, (9)

which is usually fixed by the investigator, in preventive clinical trials. For simulating the data in the
treatment group, we consider successively a proportional hazards alternative (case 1) and a late effects
alternative (case 2):

Case 1: In this case, the logrank test (or equivalently Fleming–Harrington’s test with p = q = 0) is
optimal. A relevant choice for g in (4) yields the following hazard function in the treatment
group:

𝜆T (t) = aeΔ(0). (10)

Case 2: In this case, Fleming–Harrington’s test with p = 0 and q > 0 is optimal. A relevant choice for
g in (4) yields the following hazard function in the treatment group:

𝜆T (t) = a
L0,q

((0,q
)−1 (0,q(e−at) + Δ(q)

))
L0,q (e−at)

. (11)

Copyright © 2014 John Wiley & Sons, Ltd. Statist. Med. 2015, 34 541–557

547



V. GARÈS ET AL.

The shifts Δ(0) and Δ(q) in (10) and (11) can be obtained from (8) and (9), as

Δ(i) = 0,i
(
r
(
1 − SP(𝜏)

)
+ SP(𝜏)

)
− 0,i

(
SP(𝜏)

)
, i = 0, q.

When q = 0, (11) reduces to (10). Therefore in case 1, we simulate the data in the treatment group
by using (11) with q = 0. In case 2, we use q = 3 (in what follows, we denote by qS the value of q
used to simulate the data). In both cases 1 and 2, we consider several simulation scenarios obtained by
combining various censoring proportions (c = 0.2, 0.5, 0.8), discrepancy rates (r = 0.05, 0.1, 0.2, 0.3)
and sample sizes (n = 100, 500, 1000, 2000 with nP = nT = n∕2). Two thousand data sets are simulated
for each combination of c, r and n. The logrank test FH0 (LR thereafter), Fleming–Harrington’s test
for late effect FH3 and the proposed test MLR3 are applied to the resulting data (the nominal level is
set to 0.05), and their respective empirical powers over the 2000 data sets are obtained. The hazard and
survival functions used in this simulation study are plotted on Figure 1. For illustrative purpose, we also
plot the hazard and survival functions in the treatment group under the alternative hypothesis for which
Fleming–Harrington’s test with q = 1, 2, 4 is optimal. As expected, we note that the larger q is, the later
the treatment effect can be detected.

To investigate the level of MLRq, we let the placebo and treatment groups share the same exponential
distribution with parameter a. We consider the same combinations of c and n as aforementioned, and we
simulate 2000 data sets. For each of them, we obtain the outcome of MLRq for q ranging from 1 to 10
(the nominal level is set to 0.05). From this, we obtain the empirical levels of MLR1,… ,MLR10 over the
2000 data sets.

Using MLRq requires choosing q, and one may wonder whether the test is sensitive to this value.
To elucidate this issue, we generate 2000 data sets for each qS = 0,… , 10, where data in the placebo
group are simulated from the exponential distribution with parameter a, and data in the treatment group
are simulated from (11) with q = qS. For each qS, we obtain the empirical power of the logrank test,
of Fleming–Harrington’s tests FH1,… ,FH10 and of MLR1,… ,MLR10. For this simulation study, we
consider c = 0.8, n = 2000 and r = 0.2.
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Figure 1. Hazard and survival functions for q ⩾ 0. The curves q = 0, 1, 2, 3, 4 correspond to the haz-
ard and survival functions in the treatment group in settings where Fleming–Harrington’s test FHq is optimal

(c = 0.5 and r = 0.2).
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Results. The results for the empirical level and power are given in Tables I and II, respectively. From
Table I, we observe that the proposed MLRq respects the nominal level. From Table II, the power of
the tests LR,FH3 and MLR3 increases with n and r and decreases when censoring increases. We also
verify that the logrank test (respectively Fleming–Harrington’s test FH3) has maximum power in case 1
(respectively case 2) but performs moderately well when late effects (respectively proportional hazards)

Table I. Empirical level of MLRq for q = 1,… , 10.

n c MLR1 MLR2 MLR3 MLR4 MLR5 MLR6 MLR7 MLR8 MLR9 MLR10

100 0.2 0.043 0.046 0.047 0.049 0.052 0.051 0.056 0.050 0.052 0.052
0.5 0.055 0.054 0.051 0.052 0.051 0.049 0.049 0.051 0.052 0.053
0.8 0.053 0.056 0.057 0.055 0.050 0.054 0.052 0.053 0.055 0.053

500 0.2 0.041 0.042 0.046 0.045 0.046 0.046 0.045 0.044 0.046 0.042
0.5 0.058 0.056 0.053 0.054 0.054 0.054 0.055 0.053 0.051 0.051
0.8 0.047 0.047 0.049 0.047 0.046 0.044 0.044 0.045 0.045 0.045

1000 0.2 0.048 0.044 0.044 0.045 0.048 0.050 0.050 0.051 0.050 0.051
0.5 0.049 0.048 0.047 0.049 0.046 0.043 0.043 0.044 0.044 0.044
0.8 0.052 0.048 0.048 0.048 0.049 0.047 0.047 0.051 0.051 0.050

2000 0.2 0.041 0.043 0.043 0.043 0.043 0.043 0.043 0.044 0.044 0.042
0.5 0.054 0.057 0.058 0.058 0.055 0.056 0.058 0.055 0.054 0.054
0.8 0.047 0.052 0.056 0.053 0.056 0.056 0.052 0.052 0.052 0.052

c: censoring proportion; n: sample size; MLR: maximum weighted logrank test

Table II. Empirical power (EP) and its relative variation (RV) for the logrank (LR) test, Fleming–Harrington’s
test FH3, maximum weighted logrank test MLR3 and supremum logrank test (SLR).

qS = 0 qS = 3

LR FH3 MLR3 SLR LR FH3 MLR3 SLR

n c r EP RV EP RV EP RV EP RV EP RV EP RV EP RV EP RV

500 0.2 0.1 0.626 — 0.330 0.47 0.571 0.09 0.594 0.05 0.353 0.46 0.656 — 0.602 0.08 0.275 0.58
0.2 0.990 — 0.803 0.19 0.985 0.01 0.987 — 0.849 0.15 0.996 — 0.992 — 0.780 0.22
0.3 1.000 — 0.983 0.02 1.000 — 1.000 — 0.996 — 1.000 — 1.000 — 0.990 0.01

0.5 0.1 0.202 — 0.121 0.40 0.176 0.13 0.185 0.08 0.167 0.45 0.301 — 0.261 0.13 0.133 0.56
0.2 0.626 — 0.348 0.44 0.571 0.09 0.584 0.07 0.497 0.39 0.817 — 0.767 0.06 0.391 0.52
0.3 0.925 — 0.630 0.32 0.899 0.03 0.911 0.02 0.845 0.15 0.992 — 0.987 0.01 0.776 0.22

0.8 0.1 0.097 — 0.077 0.21 0.094 0.03 0.082 0.15 0.095 0.21 0.121 — 0.111 0.08 0.075 0.38
0.2 0.214 — 0.131 0.39 0.205 0.04 0.185 0.14 0.178 0.54 0.385 — 0.339 0.12 0.139 0.64
0.3 0.439 — 0.244 0.44 0.395 0.10 0.389 0.11 0.398 0.45 0.724 — 0.660 0.09 0.297 0.59

1000 0.2 0.1 0.906 — 0.590 0.35 0.870 0.04 0.888 0.02 0.599 0.35 0.916 — 0.887 0.03 0.500 0.45
0.2 1.000 — 0.981 0.02 1.000 — 1.000 — 0.989 0.01 1.000 — 1.000 — 0.980 0.02
0.3 1.000 — 1.000 — 1.000 — 1.000 — 1.000 - 1.000 — 1.000 - 1.000 —

0.5 0.1 0.363 — 0.194 0.47 0.324 0.11 0.339 0.07 0.268 0.48 0.512 — 0.463 0.10 0.212 0.59
0.2 0.909 — 0.592 0.35 0.873 0.04 0.892 0.02 0.763 0.22 0.983 — 0.980 — 0.690 0.30
0.3 0.999 — 0.908 0.09 0.997 — 0.998 — 0.987 0.01 1.000 — 1.000 — 0.974 0.03

0.8 0.1 0.122 — 0.086 0.30 0.111 0.09 0.113 0.07 0.117 0.46 0.216 — 0.187 0.13 0.094 0.56
0.2 0.391 — 0.231 0.41 0.355 0.09 0.353 0.10 0.351 0.48 0.671 — 0.607 0.10 0.263 0.61
0.3 0.701 — 0.372 0.47 0.647 0.08 0.654 0.07 0.675 0.30 0.959 — 0.658 0.31 0.586 0.39

2000 0.2 0.1 0.995 — 0.869 0.13 0.995 — 0.995 — 0.883 0.12 0.998 — 0.996 — 0.824 0.17
0.2 1.000 — 1.000 — 1.000 — 1.000 — 1.000 — 1.000 — 1.000 — 1.000 —
0.3 1.000 — 1.000 — 1.000 — 1.000 — 1.000 — 1.000 — 1.000 — 1.000 —

0.5 0.1 0.621 — 0.339 0.45 0.569 0.08 0.589 0.05 0.468 0.42 0.806 — 0.753 0.07 0.385 0.52
0.2 0.993 — 0.855 0.14 0.991 — 0.911 0.08 0.964 0.04 1.000 — 1.000 — 0.946 0.05
0.3 1.000 — 0.998 — 1.000 — 1.000 — 1.000 — 1.000 — 1.000 — 1.000 —

0.8 0.1 0.217 — 0.132 0.39 0.191 0.12 0.193 0.11 0.195 0.50 0.391 — 0.338 0.14 0.149 0.62
0.2 0.646 — 0.360 0.44 0.592 0.08 0.606 0.06 0.595 0.35 0.910 — 0.885 0.03 0.509 0.44
0.3 0.945 — 0.691 0.27 0.930 0.02 0.933 0.01 0.925 0.07 0.999 — 0.999 — 0.881 0.12

The data are simulated according to the procedure described in Section 3.2 with qS = 0 and qS = 3.
c: censoring proportion; n: sample size; r: discrepancy rate (9).
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are present. In contrast, the proposed maximum weighted logrank test MLR3 performs well in both cases.
Its power is close to the maximum power whatever the true alternative is. To see this, we calculate, for
each test, the relative variation (RV) of its empirical power p with respect to the maximum achieved
power pmax. RV is defined as

RV =
|p − pmax|

pmax
.

One clearly observes that the RV of the power of the maximum weighted logrank test is small in every
simulation scenario. Moreover, this RV is rather stable with respect to c, n and r, which is not the case
for Fleming–Harrington’s test (case 1) and the logrank test (case 2).

These findings suggest that the proposed maximum weighted logrank test is an appealing compro-
mise between the logrank and Fleming–Harrington tests when one wishes to test the equality of survival
distributions without assuming a priori whether the true alternative is proportional hazards or late effects.

The results of the sensitivity study are given in Table III. In [33], the authors show that the main issue
with Fleming–Harrington’s test is to choose between a logrank test (q = 0) and a ‘genuine’ Fleming–
Harrington’s test with q > 1. In other words, the main issue is to decide a priori whether proportional
hazards or late effects occur. Indeed, the authors observe that if the data are simulated under some qS >
1, the power of Fleming–Harrington’s test is not very sensitive to a variation of q in the weight [1 −
Ŝ(s)]q provided that q > 1. On the other hand, if the data are simulated under the proportional hazards
assumption (i.e., with qS = 0), the power of the logrank test is maximum, while the power of Fleming–
Harrington’s test decreases drastically as q increases in [1 − Ŝ(s)]q. From Table III, the proposed test
MLRq again provides a good compromise between the logrank and Fleming–Harrington’s test: its power
is both close to the maximum achieved power and relatively insensitive to q. In [33], the authors conclude
that in most cases, 3 is an appropriate value for q in Fleming–Harrington’s test. Similarly, we observe
from Table III that using MLR3 ensures a good power whatever the true alternative is (including the
proportional hazards). Moreover, the test MLR3 is more stable (in terms of power) than FH3.

Table III. Sensitivity to q of FHq and MLRq.

qS LR FH1 FH2 FH3 FH4 FH5 FH6 FH7 FH8 FH9 FH10

0 0.629 0.526 0.416 0.334 5 0.289 0.256 0.229 0.211 0.192 0.182 0.167
1 0.625 0.756 0.744 0.702 0.655 0.611 0.580 0.545 0.513 0.485 0.456
2 0.609 0.839 0.864 0.863 0.850 0.835 0.812 0.781 0.754 0.729 0.700
3 0.623 0.869 0.919 0.925 0.922 0.910 0.901 0.890 0.87 0.864 0.852
4 0.626 0.891 0.943 0.959 0.961 0.963 0.961 0.960 0.953 0.948 0.939
5 0.608 0.911 0.963 0.976 0.978 0.982 0.980 0.979 0.976 0.975 0.973
6 0.597 0.916 0.964 0.982 0.987 0.989 0.991 0.991 0.990 0.991 0.990
7 0.562 0.910 0.962 0.978 0.986 0.987 0.987 0.986 0.986 0.985 0.983
8 0.564 0.909 0.970 0.988 0.993 0.995 0.996 0.996 0.996 0.995 0.993
9 0.570 0.911 0.972 0.988 0.993 0.996 0.996 0.998 0.998 0.998 0.998
10 0.571 0.912 0.971 0.987 0.995 0.998 0.999 0.999 0.998 0.998 0.998

qS MLR1 MLR2 MLR3 MLR4 MLR5 MLR6 MLR7 MLR8 MLR9 MLR10

0 0.620 0.606 0.589 0.584 0.582 0.579 0.571 0.571 0.570 0.563
1 0.729 0.731 0.720 0.692 0.679 0.671 0.657 0.650 0.642 0.635
2 0.797 0.828 0.826 0.816 0.801 0.784 0.773 0.758 0.747 0.741
3 0.833 0.881 0.897 0.896 0.888 0.880 0.875 0.859 0.848 0.841
4 0.864 0.923 0.936 0.946 0.945 0.943 0.940 0.934 0.931 0.923
5 0.880 0.947 0.959 0.967 0.968 0.970 0.967 0.968 0.965 0.960
6 0.887 0.950 0.971 0.978 0.983 0.984 0.983 0.983 0.982 0.982
7 0.874 0.946 0.967 0.974 0.977 0.978 0.979 0.978 0.974 0.973
8 0.881 0.954 0.977 0.985 0.989 0.988 0.989 0.990 0.990 0.989
9 0.887 0.958 0.977 0.986 0.990 0.994 0.993 0.993 0.992 0.992
10 0.880 0.956 0.981 0.989 0.993 0.994 0.996 0.996 0.996 0.996

On each line, the data are generated using the procedure described in Section 3.2, by using the value qS (qS =
1,… , 10). The empirical power calculations for LR, FHq and MLRq (q = 1,… , 10) are based on 2000 samples
(with n = 2000, c = 0.8 and r = 0.2).
LR: logrank test; MLR: maximum weighted logrank test; FH: Fleming–Harrington’s test.
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Overall, the proposed MLR3 seems to provide an appealing alternative to both logrank and Fleming–
Harrington’s tests.

3.3. Sample size calculation

Several sample size formulas have been proposed for weighted logrank tests [29,35–37]. In this section,
we derive a sample size formula for the test MLRq. This formula is implicit; hence, we describe a
numerical algorithm for evaluating the necessary sample size.

Before stating our result, we introduce some further notations. Let (U,V) be a mean-zero bivariate
Gaussian vector with variance–covariance matrix (Σ̃1)2(𝜏, 𝜏) given by (7) with m = 2 and (q1, q2) =
(0, q). Let z𝛼 be the upper 𝛼-quantile of max(|G̃0(𝜏)|, |G̃q(𝜏)|), where the process (G̃0, G̃q) is defined in
Section 3.1

𝛼 = P0

{
max

(|G̃0(𝜏)|, |G̃q(𝜏)|) > z𝛼
}
= 1 − P0

{(
G̃

0(𝜏), G̃q(𝜏)
)
∈

[
−z𝛼, z𝛼

]
×
[
−z𝛼, z𝛼

]}
.

Under 0, for a large n, MLRq is approximately distributed as max(|G̃0(𝜏)|, |G̃q(𝜏)|) where
(G̃0(𝜏), G̃q(𝜏)) is a Gaussian vector with mean 0 and covariance matrix (Σ̃0)2(𝜏, 𝜏) ∶= E[G̃0(𝜏)G̃q(𝜏)].
Next,

1 − 𝛽 = P1

{
max

(|||||FH0
n(𝜏)

𝜎̂0(𝜏)

||||| ,
|||||FHq

n(𝜏)
𝜎̂q(𝜏)

|||||
)

> z𝛼

}

= 1 − P1

{(
FH0

n(𝜏)
𝜎̂0(𝜏)

,
FHq

n(𝜏)
𝜎̂q(𝜏)

)
∈

[
−z𝛼, z𝛼

]
×
[
−z𝛼, z𝛼

]}

= 1 − P1

⎧⎪⎨⎪⎩
⎛⎜⎜⎝

FH0
n(𝜏)

𝜎̂0(𝜏)
−

√
n
𝜇0

Σ1

1,1

,
FHq

n(𝜏)
𝜎̂q(𝜏)

−
√

n
𝜇q

Σ1

2,2

⎞⎟⎟⎠ ∈ E0,q
𝛼,n

⎫⎪⎬⎪⎭ ,

which can be approximated, if n is large enough, by 1−P1
{(U,V) ∈ E0,q

𝛼,n} where (U,V) and E0,q
𝛼,n are as

described earlier. The unicity of the solution comes from the fact that 1 − 𝛽 decreases when n decreases.
Let r and SP(𝜏) be given. Suppose that we wish to test the hypothesis (6) (with m = 2 and (q1, q2) = (0, q))
by using the test MLRq with a type-I risk 𝛼 and a type-II risk 𝛽. Then the necessary sample size n is the
unique solution of the equation

P1

{
(U,V) ∈ E 0,q

𝛼,n

}
= 𝛽 where E 0,q

𝛼,n ∶=
⎡⎢⎢⎣−z𝛼−

√
n
𝜇0

Σ1

1,1

, z𝛼 −
√

n
𝜇0

Σ1

1,1

⎤⎥⎥⎦ ×
⎡⎢⎢⎣−z𝛼 −

√
n
𝜇q

Σ1

2,2

, z𝛼 −
√

n
𝜇q

Σ1

2,2

⎤⎥⎥⎦ .
(12)

Equation 12 provides only an implicit formula for the necessary sample size n. Therefore, we propose to
approximate n as follows. From the result earlier, we have that

𝛽 = P1

{
(U,V) ∈ E0,q

𝛼,n

}
= ∫

z𝛼−
√

n 𝜇0

Σ
1
1,1

−z𝛼−
√

n 𝜇0

Σ
1
1,1

∫
z𝛼−

√
n 𝜇q

Σ
1
2,2

−z𝛼−
√

n 𝜇q

Σ
1
2,2

f(U,V)(u, v)dudv

= E

⎡⎢⎢⎢⎣I
⎧⎪⎨⎪⎩U ∈

⎡⎢⎢⎣−z𝛼 −
√

n
𝜇0

Σ1

1,1

, z𝛼 −
√

n
𝜇0

Σ1

1,1

⎤⎥⎥⎦
⎫⎪⎬⎪⎭ I

⎧⎪⎨⎪⎩V ∈
⎡⎢⎢⎣−z𝛼 −

√
n
𝜇q

Σ1

2,2

, z𝛼 −
√

n
𝜇q

Σ1

2,2

⎤⎥⎥⎦
⎫⎪⎬⎪⎭
⎤⎥⎥⎥⎦ ,
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which can be approximated by

f (n) = 1
M

M∑
i=1

I

⎧⎪⎨⎪⎩Ui ∈
⎡⎢⎢⎣−z𝛼 −

√
n
𝜇0

Σ1

1,1

, z𝛼 −
√

n
𝜇0

Σ1

1,1

⎤⎥⎥⎦
⎫⎪⎬⎪⎭ I

⎧⎪⎨⎪⎩Vi ∈
⎡⎢⎢⎣−z𝛼 −

√
n
𝜇q

Σ1

2,2

, z𝛼 −
√

n
𝜇q

Σ1

2,2

⎤⎥⎥⎦
⎫⎪⎬⎪⎭

if M is large and (Ui,Vi) (i = 1,… ,M) are independent copies of (U,V). Thus, we propose to simulate
M couples (Ui,Vi) from (U,V) and to take n such that f (n) < 𝛽 and f (n − 1) > 𝛽.

The proposed methodology is now evaluated in a numerical study. First, we obtain the necessary sample
size for testing the hypothesis (6) with MLRq under various settings defined by the censoring proportion
c (c = 0.2, 0.5, 0.8), the discrepancy rate r (r = 0.1, 0.2, 0.3) and the probability p1 (p1 = 0.2, 0.5, 0.8)
(p1 reflects the investigator’s degree of certainty that proportional hazards occur). Table IV provides the
results for q = 1,… , 5, with 𝛼 = 0.05 and 𝛽 = 0.2 (the results are obtained for M = 106). Then, we
compare the sample sizes required by the logrank, Fleming–Harrington and maximum weighted logrank
tests in a typical setting of a prevention trial, that is, we consider c = 0.8 and r = 0.2 with 𝛼 = 0.05 and
𝛽 = 0.2. p1 is set equal to 0.5, reflecting the fact that no preference is given to the proportional hazards or
late effects alternative. The results are given in Table V(a). In Table V(b), we investigate the sensitivity of
the necessary sample size to the probability p1. We report the results for the maximum weighted logrank
test MLR3 when c = 0.8 and r = 0.2.

As expected, the necessary sample size for MLRq increases when the censoring proportion increases
and when the discrepancy rate r decreases (smaller late effects require more patients to be detected). We
also observe that the necessary sample size for MLRq does the following: (i) decreases as q increases when
p1 is small and increases with q when p1 is large and (ii) increases when p1 increases (as the suspicion of
proportional hazards increases, one needs more patients to decide whether proportional hazards or late
effects occur). Finally, the necessary sample size for MLRq is as follows: (i) is larger than for FHq but
the difference stays moderate and (ii) stays close to the necessary sample size for the logrank test.

4. A comparison with the supremum over time logrank test

The supremum over time logrank test (SLRn thereafter) was proposed as an alternative to weighted
logrank tests to detect late effects [28, 29]. In this section, we compare SLRn and MLRq via simula-
tions. Precisely, we compare the level, power (against a proportional hazards alternative, a late effects
alternative and a crossing hazards alternative) and necessary sample size of the tests.

4.1. A numerical study

The supremum logrank statistic is defined as

SLRn = sup
t∈[0,𝜏[

(
FH0

n(t)
𝜎̂0(t)

)
.

We consider the same simulation scenarios as in Section 3.2. These scenarios are obtained by combining
various censoring proportions (c = 0.2, 0.5, 0.8), discrepancy rates (r = 0.05, 0.1, 0.2, 0.3) and sample
sizes (n = 100, 500, 1000, 2000 with nP = nT = n∕2) for both case 1 (proportional hazards alternative)
and case 2 (late effects alternative) (the crossing hazards alternative is described in Section 4.2). 2000
data sets are simulated for each scenario. The empirical level and power of SLRn are added to Table II
(the nominal level is set to 0.05).

As expected, the power of SLRn increases with n and r and decreases when censoring increases. Under
a proportional hazards alternative, the RVs of the power of the supremum logrank and maximum weighted
logrank tests are similar. Under late effects, the supremum logrank test performs badly compared with the
maximum weighted logrank test: in particular, the RV of the power is far larger for the supremum logrank
than for the maximum weighted logrank. Finally, the power of SLRn decreases as qS increases, that is, as
late effects occur later (based on 2000 simulated samples of size n = 2000, with c = 0.8 and r = 0.2, we
obtained the following values for the empirical power of SLRn: 0.603, 0.557, 0.499, 0.512, 0.504, 0.493
when qS = 0, 1, 2, 3, 4, 5, respectively). From these results, the maximum weighted logrank test appears
again to offer the best compromise to detect both proportional hazards and late effects.
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Table IV. Sample size calculation for MLRq (with 𝛼 =
0.05 and 𝛽 = 0.2).

p1 = 0.2

c r MLR1 MLR2 MLR3 MLR4 MLR5

0.2 0.1 919 936 925 896 868
0.2 264 269 267 262 258
0.3 133 136 137 136 136

0.5 0.1 30,079 2822 2565 2352 2163
0.2 767 706 650 601 565
0.3 342 318 297 281 271

0.8 0.1 10,937 9396 8181 7241 6517
0.2 2624 2269 1996 1797 1644
0.3 1121 984 881 811 763

p1 = 0.5

0.2 0.1 903 959 990 1007 1014
0.2 261 276 285 291 296
0.3 132 139 144 149 152

0.5 0.1 3216 3203 3148 3073 2992
0.2 805 800 791 778 770
0.3 358 359 357 357 357

0.8 0.1 11,919 11,336 10,765 10,251 9762
0.2 2852 2734 2622 2517 2439
0.3 1222 1173 1137 1113 1195

p1 = 0.8

0.2 0.1 867 920 954 977 992
0.2 252 267 276 282 287
0.3 128 135 139 143 145

0.5 0.1 3290 3407 3480 3519 3554
0.2 824 854 873 883 894
0.3 368 382 391 395 400

0.8 0.1 12,660 12,947 13,006 13,054 13,068
0.2 3042 3107 3141 3158 3167
0.3 1300 1327 1343 1357 1367

MLR, maximum weighted logrank test.

Table V. Necessary sample size (NSS) calculation (with c = 0.8, r = 0.2, 𝛼 = 0.05, 𝛽 = 0.2).

V(a):

Test LR FH1 FH2 FH3 FH4 FH5 MLR1 MLR2 MLR3 MLR4 MLR5

NSS 2856 2332 1806 1474 1253 1099 2852 2734 2622 2517 2439

V(b):

p1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
NSS for MLR3 1645 1816 1996 2202 2404 2622 2821 2993 3141 3244 3314

In Table V(a): p1 = 0.5.
MLR: maximum weighted logrank test; LR: logrank test; FH: Fleming–Harrington’s test.

We also compare the supremum logrank and maximum weighted logrank tests in terms of necessary
sample size. The sample size calculation for SLRn can be found in [29]. We calculate the necessary
sample size for testing a differential effects alternative having a discrepancy rate r (r = 0.1, 0.2, 0.3) at
the end of the study, under a censoring proportion c (c = 0.2, 0.5, 0.8). Table VI provides the results
(for 𝛼 = 0.05 and 𝛽 = 0.2). As expected, the necessary sample size for SLR increases with the censoring
proportion and decreases when the rate r increases. Moreover, the necessary sample size for SLRn and
the proposed maximum weighted logrank test are of the same order of magnitude.

Copyright © 2014 John Wiley & Sons, Ltd. Statist. Med. 2015, 34 541–557
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Table VI. Sample size calculation for
LR, SLR and MLR3.

c r LR SLR MLR3

0.2 0.1 714 755 990
0.2 191 201 285
0.3 87 92 144

0.5 0.1 2870 3035 3148
0.2 675 713 791
0.3 278 294 357

0.8 0.1 11,415 12,069 10,765
0.2 2579 2727 2622
0.3 1024 1082 1137

LR: logrank test; MLR: mean weighted
logrank test; SLR: supremum over time
logrank test.

4.2. A crossing hazards alternative

The logrank and Fleming–Harrington’s test for late effects are appropriate for detecting a proportional
hazards alternative and a late effects alternative, respectively. One may thus wonder how the proposed
maximum weighted logrank test behaves against a crossing hazards alternative. In this section, this issue
is briefly investigated numerically.

We simulate n = 2000 censored survival times in two groups (nT = nP = n∕2). The data in placebo
and treatment groups are simulated from Weibull distributions W(10, 1.37) and W(30, 0.97), respectively,
which ensures a discrepancy rate r equal to 0.2. The censoring fraction c is set to 0.8. The survival
functions in the treatment and placebo groups are plotted on Figure 2. The empirical powers of the logrank
test, Fleming–Harrington’s test FH3, maximum weighted logrank test MLR3 and supremum logrank,
calculated over 2000 simulated data sets, are, respectively, 0.597, 0.877, 0.849 and 0.524. The maximum
weighted logrank test MLR3 and Fleming–Harrington’s test FH3 outperform both logrank and supremum
logrank tests.
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Figure 2. Crossing hazards alternative.
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5. Application to real data: the GuidAge study

GuidAge is a randomized, parallel-group, double-blinded trial registered to ClinicalTrials.gov under
the number NCT00276510. Elderly subjects (aged 70 years or older) were enrolled in this trial. These
subjects were free of dementia and had expressed a spontaneous memory complaint to their general prac-
titioner in France. The subjects were randomized to either a daily 240 mg dose of standardized Ginkgo
biloba extract (EGb761) or a placebo and were followed-up for 5 years by their physician and in expert
memory centers. A total of 712 physicians and 25 memory centers participated in the trial. The primary
outcome was conversion to probable Alzheimer’s disease.

The former analysis of this trial was based on the logrank test. Assuming that under EGb761, the
conversion rate from memory complaint to Alzheimer’s disease is 25% less than under the placebo, the
Alzheimer’s disease-free rate after a 5-years long follow-up is equal to 89.63% under EGb761 and to
86.18% under the placebo. The total sample size (n = 2800) was calculated by letting 𝛼 = 0.05, 𝛽 = 0.2
and by taking account of the dropout rate over the 5 years of follow-up. The p-value of the logrank test
is 0.304, yielding the conclusion that there is no significant effect of the treatment.

However, EGb761 is a preventive treatment whose efficacity may require some preliminary exposure
before an effect occurs. This is confirmed by the plot of hazard functions in the treatment and placebo
groups (Figure 3). In this case, we suggest to use the statistic MLR3 to test a treatment effect. We set
p1 = 0.5, that is, we do not favor any of the proportional hazards or late effects alternatives. Under this
setting, the necessary sample size calculated from (12) is n = 2351. If we take account of the dropout rate,
n = 3001. The results of the analysis are given in Table VII. The p-value of the proposed test MLR3 is
0.008; thus, we conclude to a significant effect of the EGb761. For conciseness, we also report the results
for Fleming–Harrington’s test FHq (q = 2, 3, 4) and for the maximum weighted logrank test MLRq with
q = 2, 4. All these tests conclude to a late effect of EGb761.
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Figure 3. Hazard functions for the treatment and placebo groups in GuidAge study.

Table VII. GuidAge study. Various test statistics and their p-value.

Logrank FH2 FH3 FH4 MLR2 MLR3 MLR4 SLR

Test statistic 1.027 2.562 2.814 2.882 2.562 2.814 2.882 1.023
p-value 0.304 0.010 0.004 0.003 0.018 0.008 0.006 0.6084

In bold are the significant results at the 5% level.
FH: Fleming–Harrington’s test; MLR: maximum weighted logrank test; SLR: supremum over
time logrank test.
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6. Summary and conclusion

We propose a new statistic for testing equality of two survival distributions when late differences between
groups may exist. Generally, at the design stage of a clinical trial, one cannot assure that late effects
do really exist or not, and it is thus difficult to choose a priori between a logrank test and Fleming–
Harrington’s test for late effect. The proposed test statistic provides a solution to this dilemma. It has
good power against both alternatives of proportional hazards and late effects. Moreover, it outperforms
both logrank test (when late effects occur) and Fleming–Harrington’s test (when proportional hazards
hold). The proposed test also performs better than the supremum logrank test. We also provide a sample
size formula for the proposed test statistic, and we illustrate our methodology on a real data set in the
field of Alzheimer’s disease.

We consider here the detection of late effects. Letting p > 0 and q = 0 in (1) allow detection of early
effects and a maximum weighted logrank test for early effects can be constructed along the same lines
as MLRq. This test will enjoy similar properties as MLRq.

Finally, in this article, we consider the maximum of the logrank and Fleming–Harrington’s tests. Sev-
eral other functions may be used to combine these statistics. The investigation of such functions and their
relative merits is the topic for future research.
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